首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构,发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。阶段的发展不
设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构,发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。阶段的发展不
admin
2016-01-20
66
问题
设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构,发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。阶段的发展不是间断性的跳跃,而是逐渐、持续的变化。皮亚杰的认知发展阶段论为发展性辅导中学生智力发展水平的评估和诊断,提供了重要的理论依据。
教学内容:《普通高中课程标准实验教科书(数学)》必修4(人教A版),第三章、第一节、第145—148页。
“二倍角的正弦、余弦、正切”是在研究了两角和与差的三角函数的基础上研究具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简和证明提供了非常有用的理论工具,通过对二倍角公式的推导知道:二倍角公式的内涵是“揭示具有倍数关系的两个角的三角函数的运算规律”,通过推导还让学生了解高中数学中由“一般”到“特殊”的化归数学思想,因此这节课也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力都有重要意义。
教学目标:根据新课程标准的要求、本节教材的特点和学生对三角函数的认知特点,我们把本节课的教学目标确定为:
1.能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦,正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。
2.掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。
3.通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。
学情分析:我们的学生从认知角度上看,已经比较熟练地掌握了两角和与差的三角函数的基础。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究的能力较弱。
教材分析:对公式的引入改变了教材中直接填结果的做法,而是通过提出问题,设置情境,对和角公式中的角α、β的关系特殊情形α=β时的简化,让学生探讨发现、推证得出二倍角公式,这样学生会感到自然,好接受,并可清晰知道和角的三角函数与二倍角公式的联系,同时让学生学会怎样发现数学规律,并体会到化归(这里是将一般化归到特殊)这一基本数学思想在发现中所起的作用,对教材的例题则有所增减,处理方式也有适当改变。
教学重点、难点:
重点:使学生在掌握了和角、差角公式后如何将和角公式化为二倍角公式,以及公式的两种变形和公式成立的条件;如何学会发现数学规律,并体会化归、转化等基本数学思想在发现中所起的作用,能正确应用这些公式进行三角化简、求值、证明等。
难点:灵活应用二倍角公式变形的态式,熟练解三角综合题。
请根据上述针对“二倍角的正弦、余弦、正切”一课的分析,设计相应的教学过程,并简要表述设计思路。
选项
答案
教学过程 一、复习启发、设置情境、引出正题 1.(复习性提问):请同学回顾两角和的公式。 (学生回答,教师板书) sin(α+β)=sinαcosβ+cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ tan(α+β)=[*] 2.(探索性提问)当上述公式中角α、β具有特殊化关系α=β时,公式变为什么形式?请一名学生到黑板上演示简化,其他同学在座位上做。 学生板书: sin(α+α)=sinαcosα+cosasinα[*]sin2α=2sinαcosα cos(α+α)=cosαcosα-sinαsinα[*]cos2α=cos
2
α-sin
2
α [*] 3.集体订正后,引导学生观察其结构,并点名回答观察结果。 (学生回答:左边角均为2α,右边角均为α,具有“二倍”关系) 4.引入正题 师:肯定学生观察结论准确,并加以说明公式中蕴含着“对称”、“和谐”之美。 教师板书(放幻灯片) 二倍角公式简记为 sin2α=2sinαcosα→S
2α
cos2α=cos
2
α-sin
2
α→C
2α
tan2α=[*]T
2α
即为我们今天要学习的二倍角公式。 【设计意图:复习已学公式,对其特殊化.让学生学会从“一般”到“特殊”的化归方法,从而达到“温故知新”的教学目的】 二、引导探究、深化认识 1.回忆推导过程,让学生明确二倍角公式是和角公式的特殊情形,知道二者之间的联系。 2.(探索性提问)对C
2α
: cos2α=cos
2
-sin
2
α中的平方联想到sin
2
α+cos
2
α=1,C
2α
有无其他变式? (学生探索、总结得出两种变式:cos2α=2cos
2
α-1,cos2α=1-2sin
2
α) 3.(深化性提问):有了这组二倍角公式,我们是否可以放心大胆的应用呢? (学生:不能,要注意公式成立的条件) 引导学生联想和角公式的条件,利用类比的方法,探索出二倍角公式的条件。 S
2α
:sin2α=2sinαcosα(α∈R) C
2α
:cos2α=cos
2
-sin
2
α(α∈R) T
2α
:tan2a=[*] 指出:尤其注意T
2α
成立的条件。 【设计意图:引导学生应用联想、类比的教学思想、得出公式成立的条件】 4.(探索性提问)在T
2α
中,当左边的α=[*]+kπ(k∈Z)时,虽然右边的tanα不存在,但左边的tan2α存在,能否用T
2α
求tan2α?该怎样求? 引导学生,改用诱导公式:tan2α=tan2([*]+kπ)=tan(π+kπ)=tanπ=0 【设计意图:引导学生对特殊情形,另辟蹊径,寻找求解依据,培养学生细致、灵活的探索习惯】 5.二倍角公式中的倍数关系是相对的,为深化对二倍角公式的理解,出示一组填空题,(放幻灯片) (1)填角 sinα=2sin_______cos_______ cosα/2-cos
2
_______-sin
2
_______-1=1-2sin
2
_______ [*] cos[*]=cos
2
_______-sin
2
_______ (2)填=或≠号 一般情况下:sin2α_______2sinα,cos2α_______2cosα,tan2α_______2tanα 【设计意图:通过填空,让学生灵活理解“二倍角”的含义,根据学生易混点,类比公式,展开训练,达到“跨越障碍、突破难点”之目的】 三、巩固公式,学习应用 出示四道例题,学生分组训练,每组一题,做完后组内交流,订正答案,最后教师引导学生小结方法、技巧、要点、解题规范等——放幻灯片。 (第一组学生做)例1.不查表,求下列函数值。 (1)sin67°30’cos67°30’ (4)sin15°cos15° (5)1-2sin
2
[*] (6)[*] 【设计意图:通过直接应用公式、间接应用公式、一题多解,巩固二倍角公式】 (第二组学生做)例2.已知sinα=[*],求sin2α、cos2α、tan2α的值。 讲评:此题目中对角有范围限制,做题时应注意什么?仅知道sinα值,欲求二倍角正弦、余弦、正切,先需要知道什么?……在求cos2α值时,要灵活应用C
2α
三种等价形式,并注意在求解过程中要尽量使用已知的原始数据,减少错误的可能性。 【设计意图:由浅入深,巩固公式,培养学生规范、科学解题的能力,教给学生小结解题经验,做后反思】 (第三组学生做)例3.证明[*] 讲评证法1:等价证1+sin4θ-cos4θ=2tanθ[*] 证法2:等价证[*] 证法3:巧妙应用“1”,即用“1=sin
2
θ+cos
2
θ”代换,后略。 【设计意图:让学生学会等价证明、转化证题及一题多证,以培养学生数学思维的灵活性、散发性及创造性思维,加深巩固二倍角公式和综合应用已学过的技巧证题】 (第四组学生做)例4.利用三角公式化简sin50°(1+[*]tan10°) 讲评此题技巧是先将“切化弦”,然后用已学过的知识和二倍角公式化简 【设计意图:复习应用所学知识解简单三角综合问题,培养学生综合解题应用能力】 四、提炼总结——放幻灯片 (1)在两角和的三角函数公式S
(α+β)
、C
(α+β)
、T
(α+β)
中,当α=β时,就可得到二倍角的三角函数公式S
2α
、C
2α
、T
2α
,说明:后者是前者的特例。 (2)S
2α
、C
2α
。中角α没有条件限制,而T
2α
中,只有α≠[*]+kπ,(k∈Z)时才成立。 (3)二倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的二倍,[*]的二倍,3α是[*]的二倍等等都适用,要熟悉这些形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活应用公式的关键。 cos2α有三种形式:cos2α=cos
2
α-sin
2
α=2cos
2
α-1=1-2sin
2
α.要依据条件灵活应用公式,另外逆用此公式时更要注重结构形式。 【设计意图:使学生对本节课所学知识的结构有一个清晰的认识,抓住重点、难点,关键进行课后复习巩固】 五、作业布置 必做:教科书P
150
。习题3.1A组14、15 【设计意图:培养学生自觉学习的习惯,检查学习效果,及时反馈,查漏补缺】 选做: (1)用sinα、cosα表示sin3α、cos3α(即推导三倍角公式)。 (2)已知:[*]的值。 【设计意图:给学有余力的学生留出自我发展的空间,尝试能力,拓展创新】 设计思路 1.本节公式比较多,首先要搞清楚各公式之间的内在联系,也就是要很好地理解上面的知识结构图,其次理解如何由和角公式推导倍角公式,然后明确倍角的含义,熟练地运用倍角公式进行求值、化简等三角运算及恒等变形。 2.在三角式的运算及恒等变形过程中,除了倍角公式外,也离不开前面所学的同角三角函数关系、诱导公式以及和角公式等,它们是一个有机整体.在解题过程中要求学生先分析条件与求解目标之间的差异,选择恰当的公式进行转化沟通,然后明确解题思路,设计解题步骤,完善解答过程,培养逻辑思维能力。 3.我们通过一题多解,使我们学会数学思考与推理,训练发散性思维,培养创造性意识,提高数学素养。 4.以公式特殊情形α=β化简为切入点,以学生探索、推导、应用为主线,以学生发展能力为目的。
解析
转载请注明原文地址:https://kaotiyun.com/show/ILtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
交通环境是由人、车、路构成的公共生活之一,目前,我国机动车拥有量已超过1.78亿辆,拥有驾照的公民已超过1.3亿人。由此带来一系列的交通安全问题,引发社会公众强烈反响。下列是有关交通问题的一些调查数据:《人民日报》关于不文明开车行为及其
当代青年只有不断拓展知识面和社会视野,增强创新意识和能力,才能适应时代发展的需要。这启示我们()。
因为杀妻分尸,杰出科学家、浙江绍兴轻纺科技中心有限公司总经理徐建平被一审判处死刑。但却有近200名高级知识分子上书法院,请求枪下留人,理由是他为中国纺织行业作出过突出贡献,主张让他“戴罪立功”。上述求情行为()。
侯老师在初二思想品德课的教学中开设“法制教学小论坛”,以“宣传法律知识,增强法制观念”为宗旨,由学生自己“搜集一段材料,明确一个观点,构思一篇论文,亮出一个自我,形成一种共识”。最后由学生自己上台演讲。这一教学方法称为()。
图中x轴(横坐标)表示社会劳动生产率,y轴(纵坐标)表示单位商品价值量,其中正确反映二者关系是()。
精准扶贫是指针对不同贫困区域环境、不同贫困农户状况,运用科学有效的程序对扶贫对象实施精确识别、精确帮扶、精确管理的治贫方式。精准扶贫贵在“精准”,这意味着开展该项工作要()。①保障贫困群体的权益,给予无差别补贴②具体分析致贫原因,找
党的群众路线教育实践活动开展以来,全国新闻单位走基层、转作风、改文风,让文字记录民生,让镜头聚焦民情,让电波传递民意,创作出更多贴近生活、基层和群众的优秀作品。这项活动充分说明()。
在不考虑其他因素的情况下,下列选项中能够引起商品房需求曲线出现图中变化的因素可能是()。①房贷首付比例提高②实施购房契税减免政策③商品房价格降低④实行购房补贴政策
长征是人类历史上的伟大壮举。长征途中,红军战士用坚强的信念和意志征服人类生存极限,铸就了长征精神。这一精神()。①是激励中华民族紧密团结的巨大物质力量②是中华民族自强不息民族品格的集中展示③是中华民族实现中国梦的强大精神动力④是对当今的时代
已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。(1)求证:数列{an}是等比数列;(2)记bn=10+log9an,求{bn}的前n项和Tn的最大值及相应的n值。
随机试题
孩童甲在玩耍时,不慎跌入没有盖严井盖的井中导致左腿骨折,该井属于市政公路管理局管理。则()。
下列选项中,说法正确的是()。
根据《建设工程工程量清单计价规范》GB50500—2013,不能列人其他项目清单的是()。
某企业年初未分配利润为100万元,本年净利润为1000万元,按10%计提法定盈余公积,按5%计提任意盈余公积,宣告发放现金股利为80万元,该企业年末未分配利润为()万元。
2月10日,某投资者以150点的权利金买入一张3月份到期、执行价格为10000点的恒生指数看涨期权,同时,他又以100点的权利金卖出一张3月份到期、执行价格为10200点的恒生指数看涨期权。那么,该投资者的最大可能盈利(不考虑其他费用)是()
2011年4月1日,A企业向B企业订购一批设备,按照合同约定。由A企业在2011年5月31日前向B企业提供货物,B企业收到货物后的10天内支付货款。2011年5月25日,A企业按照合同约定完成全部货物的生产,5月30日A企业得到确切证据,证明B企业经营状况
团体测验始于第一次世界大战,()是第一个团体测验。
有限责任公司和股份有限公司最主要的区别是()。
阳历闰年比其他年份多一天,主要原因是()。
16周岁的中学生史某在一次抽奖活动中获得10万元大奖。史某用该笔款项不仅交纳了自己的学费,还帮助父亲偿还了5万元欠款。史某()(2014年非法学基础课单选第22题)
最新回复
(
0
)