首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数.
已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数.
admin
2017-10-25
47
问题
已知函数f(x,y)=x+y+xy,曲线C:x
2
+y
2
+xy=3,求f(x,y)在曲线C上的最大方向导数.
选项
答案
由条件知f’
x
(x,y)=1+y,f’
y
(x,y)=1+x,于是梯度为 gradf(x,y)=f’
x
.i+f’
y
.j=(1+y)i+(1+x)j, 由梯度与方向导数[*]的关系,知 [*] 于是问题转化为求函数H(x,y)=[*]在约束条件C:x
2
+y
2
+xy=3下的最大值. 为计算方便可将问题转化为求函数T(x,y)=H
2
(x,y)=(1+y)
2
+(1+x)
2
在条件C:x
2
+y
2
+xy=3 下的最大值,于是由拉格朗日乘法,令 F(x,y,λ)=(1+y)
2
+(1+x)
2
+λ(x
2
+y
2
+xy-3). 则 [*] 解得 [*] 于是得下列可疑点:A
1
(1,1),A
2
(-1,-1),A
3
(2,-1),A
4
(-1,2). 所求最大值为 max{H(1,1),H(-1,-1),H(2,-1),H(-1,2))=max{[*],0,3,3}=3. 故f(x,y)在曲线C上的最大方向导数为3.
解析
先求函数f(x,y)在点(x,y)处的梯度gradf(x,y),再求梯度的模|gradf(x,y)|;最后求
gradf(x,y)在约束条件C:x
2
+y
2
+xy=3下的最大值.
转载请注明原文地址:https://kaotiyun.com/show/Ikr4777K
0
考研数学一
相关试题推荐
设X~U(0,2),Y=X2,求Y的概率密度函数.
设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=____________.
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y>0),则区域D绕x轴旋转一周所成的几何体的体积为().
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设随机变量X的密度函数为,则P{a
用变量代换x=Int将方程化为y关于t的方程,并求原方程的通解.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为()
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数绝对收敛.
设有数量函数u(x,y,z)及向量函数F(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)},其中P,Q,R,u在Ω上有连续的二阶偏导数,证明:(I)divgradu=(Ⅱ)div(rotF)=0;(Ⅲ)rot(gradu)=θ.
已知A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量为ξ3.(Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由;(Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由;(Ⅲ)证明:A2是数量阵.
随机试题
“五十步笑百步”出自()
关于梅毒螺旋体的临床意义,下列说法错误的是A.先天性梅毒系母体苍白亚种螺旋体通过胎盘进入胎儿所致B.先天性梅毒多发生于妊娠3个月之后C.人是梅毒的惟一传染源D.获得性梅毒主要经性接触传播E.获得性梅毒在临床上分为三期
高滴度的抗RNP抗体为下列何种疾病所特有
开展药品不良反应报告与监测的目标和意义有()。
在护理程序中,下列不属于信息输出的是()。
下列不属于房地产根据市场结构分类的是()。
风险管理信息系统必须确保采用一种显而易见的方式来区分()分析操作,因为这两类操作在前台系统经营被混淆。
最低工资标准上调是影响劳动关系环境因素中的()。
【2017年】企业将自有房屋无偿提供给本企业行政管理人员使用,下列各项中,关于计提房屋折旧的会计处理表述正确的是()。
测试人员在测试某一功能时,发现该功能在需求说明书里没有,他接下来正确的做法是__________。
最新回复
(
0
)