首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
admin
2018-05-10
39
问题
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
选项
答案
教学过程 ①一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书) (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。) 学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? ②一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。 引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? ③一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫作三角形的中位线。(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言) 学生的结果如下:DE//BC,DF//AC,EF//AB,AE=EC,BF=FC,BD=AD,△ADE≌△DBF≌△EFC≌△DEF,DE=0.5BC,DF=AC,EF=0.5AB… 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书) 师:如何证明这个猜想的命题呢? 生:先将文字问题转化为几何问题然后证明。 已知:DE是ABC的中位线,求证:DE//BC、DE=0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下) 生1:延长DE到F使EF=DE,连接CF 由△AD_E≌△CFE(SAS) 得AD=FC从而BD=FC 所以,四边形DBCF为平行四边形得DF=BC,可得DE=0.5BC(板书) 生2:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即ADE≌CFE,可得BD=CF,得DBCF为平行四边形。 得DF=BC可得DE=0.5BC 生3:延长DE到F使DE=EF,连接AF、CF、CD,可得AD=CF 得DB=CF 得DF=BC 可得DE=0.5BC 生4:利用△ADE~△ABC且相似比为1:2 可得DE=0.5BC 师:很好,好极了! ④一种思考——课堂因你而添彩 问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证) ⑤一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后地回答,课堂气氛活跃) ⑥一句总结——课堂因你而彰显无穷魅力 学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业) ⑦课后反思 本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
解析
转载请注明原文地址:https://kaotiyun.com/show/JAtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
国家主席习近平反复强调坚定理想信念的极端重要性。他把理想信念看作共产党人的“政治灵魂”“精神支柱”“安身立命的根本”,比喻为人的思想和行为的“总开关”、共产党人“精神上的‘钙’”。这些论述蕴含的价值观道理是()。①理想信念是价值观的核心和灵魂②理想
活动教学法,是指通过组织活动的形式,实施思想政治课教学。但一般而言,活动教学的时间成本较高,在活动展示等环节也要注意随时掌控进度,这就要求活动教学法必须坚持()原则。
在长期的生产劳动和社会生活中,广东人民创作了《赛龙夺锦》《旱天雷》《步步高》《雨打芭蕉》等一大批富有岭南特色的经典音乐,享誉中外。这说明()。①人们在社会生活中获得和享用文化②人们在实践中创造和发展文化③文化就是人类的精神产品④人民群众需要健康
网络反腐的成效被形象地称为“小鼠标绊倒大贪官”。近日,为鼓励广大网民依法如实举报违纪违法行为,回应网民对反腐倡廉领域热点问题的关注,人民网、新华网等主流网络同步推出网络“举报监督专区”。“举报监督专区”的设立()。①体现了人民民主的广泛性②推
抓住学生中普遍存在的希望独立做事、体验成功的“小大人”心理,让学生参与管理,做学习的主人,主要符合()。
谈谈你对引导学生自主学习的理解。
注重培养学生的探究态度与能力的课程是()。
在宁夏北周李贤墓中出土的鎏金银瓶,是通过丝绸之路流传到中国的具有萨珊风格的金银器。银瓶腹中部半浮雕的6个人物,系手工打压而成,工艺精湛,银瓶上的人物故事源于希腊,银瓶精美绝伦,独一无二。该项出土文物()。
极限(a>0)的值分别为().
极限的值是()。
随机试题
A可见子宫壁内有大小不等的、深浅不一的水泡状组织,近浆膜层时,子宫表面可见紫蓝色结节B侵入肌壁呈暗红色结节状,切面大量坏死出血,组织软脆极易出血,与周围组织分界清C可见突向宫腔的息肉样组织,切面为黄色或白色,质软,可有灶状出血
乌梅的气味是沙苑子的气味是
根据《行政处罚法》和《行政许可法》,下列关于听证程序的说法正确的是:()
投资人是出资人也是受益人,可以是法人也可以是自然人,大的投资者往往也是发起人。()
具有排水功能的软基处治措施有()。
从外单位取得的原始凭证,必须盖有填制单位的()。
一般会计人员办理交接手续时的监交人员有()。
A、1B、2C、3D、4A图形数阵,优先考虑对角线方向的数字联系。观察发现:第一个数阵中,5+3=;第二个数阵中,-4+9=10÷2;第三个数阵中,3+3=;因此,第四个数阵中应该满足:7+(-3)=所求项÷,可知所求项为1。故正确答案
[A]Withhybridworking—partofaworkingweekintheoffice,partfromhome—nowseenasapost-pandemicpossiblenorm,SamKers
DeclineofColoradoRiverisSevere[A]TheColoradoRiver,whichflowedacrossthelandwithsuchgustothatitcarvedthemajes
最新回复
(
0
)