首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2015-07-22
45
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记
α
j
=[α
1j
,α
2j
,α
3j
,α
4j
]
T
,j=1,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/JcU4777K
0
考研数学三
相关试题推荐
“兵者,国之大事,死生之地,存亡之道,不可不察也。”战争往往决定着一个国家、一个民族的命运。兵败,则国家承受莫大之“辱”,人民承受无比之“痛”;兵胜,则国家稳如磐石,安定繁荣。军事领域衡量利弊得失的重要标准是
当前和今后一个时期,我国经济发展面临的问题,供给和需求两侧都有,但矛盾的主要方面在供给侧。比如,我国一些行业和产业产能严重过剩,同时,大量关键装备、核心技术、高端产品还依赖进口;事实证明,我国不是需求不足,或没有需求,而是需求变了,供给的产品却没有变,质量
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
设A与B均为n,阶矩阵,且A与B合同,则().
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
利用函数的凹凸性,证明下列不等式:
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
随机试题
如果对闲暇的需求增加()
依据()的不同,可以将论证分为演绎论证、归纳论证和类比论证。
颈动脉鞘内包绕的解剖结构为
关于有效数字的叙述,正确的是
城镇体系本身及其所有城镇在其发挥功能作用正常运行的过程中,与外界环境产生密切的相互作用,呈现出不同的扩散特征,这体现了城镇体系的()特征。
当收益率向上倾斜,并且投资人确信收益率曲线继续保持上升的趋势,投资者会购买比要求的期限短的股票。()
甲县人民代表大会代表张某,在他当选为代表一年后,迁入乙县居住。他应()。
泛化指某种特定刺激的条件反应形成后,另外一些类似的刺激会诱发同样的条件反应。新刺激越近似于原刺激,条件反应被诱发的可能性就越大。根据上述定义,下列可以称为泛化现象的是:
下列各组词语中,没有错别字的一组是:
Imagineananimalthatbecomesfrozenincoldweather.Then,whenitgetswarmer,theanimalsimplyunfreezesandgoesbacktoi
最新回复
(
0
)