首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2015-07-22
92
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记
α
j
=[α
1j
,α
2j
,α
3j
,α
4j
]
T
,j=1,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/JcU4777K
0
考研数学三
相关试题推荐
构建以()为根本,以()为核心,以准则、条例等中央党内法规为主干,由各领域各层级党内法规制度组成的党内法规制度体系。
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
证明下列不等式:
讨论下列级数在指定的区间内是否一致收敛
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明:当x≥0时,成立不等式e-x≤f(x)≤1.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得__________.
随机试题
简述延期审理和中止审理的区别。
以融资租赁方式租入的固定资产应视为承租企业的资产,列入企业的资产负债表,这体现了会计的
化生不发生于
急性阑尾炎与急性肠系膜淋巴结炎的鉴别诊断中,下列哪项最有意义
下列关于外国投资者的出资方式的描述正确的是()。
企业分配给职工的工资属于()。
抗战时期,美国陆军部长史汀生称:中国人已经做的和正在做的对侵略之卓越抵抗,以及他们对共同事业的贡献,值得我们给予最充分的支援。他所说的“贡献”是指()。
1995年颁布的《中华人民共和国教育法》规定:“教育必须为社会主义现代化建设服务。”()
下列表述错误的是:
发展社会主义民主,最根本的是要______。
最新回复
(
0
)