首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{fn}为[0,1]上的连续函数列,满足 fn(x)≤fn+1(x)≤0 (x∈[0,1]),n=1,2,…. 且fn(x)=0,证明{fn}在[0,1]上一致收敛.
设{fn}为[0,1]上的连续函数列,满足 fn(x)≤fn+1(x)≤0 (x∈[0,1]),n=1,2,…. 且fn(x)=0,证明{fn}在[0,1]上一致收敛.
admin
2022-11-23
38
问题
设{f
n
}为[0,1]上的连续函数列,满足
f
n
(x)≤f
n+1
(x)≤0 (x∈[0,1]),n=1,2,….
且
f
n
(x)=0,证明{f
n
}在[0,1]上一致收敛.
选项
答案
由[*]f
n
(x)=0知,对任意的ε>0,x∈[0,1],存在N(x)∈N
+
,有f
N(x)
(x)>-ε.又由{f
n
}为[0,1]上的连续函数列,故存在δ(x)>0,对任意的t∈U(x;δ(x)),有-ε<f
N(x)
(t)≤0.令G={U(x;δ(x)|x∈[0,1]},则G是[0,1]的一个开覆盖,由有限覆盖定理知,存在U(x
k
;δ(x
k
))∈G(k=1,2,…,m)使得[*]U(x
k
;δ(x
k
))[*][0,1].注意到对每一个t∈[0,1],{f
n
(t)}为单调递增数列,现令[*],则对任意的n>N,t∈[0,1].存在k∈{1,2,…,m},有t∈U(x
k
;δ(x
k
)),从而 -t<[*](t)≤f
N
(t)≤f
n
(t)≤0. 即{f
n
}在[0,1]上一致收敛于0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JugD777K
0
考研数学二
相关试题推荐
“只要有决心,就能把这件事做好”是条件复句。()
《中华人民共和国刑法》第385条第1款规定:国家工作人员利用职务上的便利,索取他人财物的,或者非法收受他人财物,为他人谋取利益的,是受贿罪。请分析:本款中的“利用职务上的便利”应如何理解?
下列选项中,属于继父或继母收养继子女的条件是
甲违章驾车,正常行走的行人乙为了躲避甲的车向路边躲避,结果掉入正在施工的排水沟中,施工单位丙并未设立任何警示标志,乙胳膊摔伤,花去医药费1万余元。对于乙的损失()。
科学院:研究已经证明使用自然方法可以使一些管理经营良好的农场在不明显降低产量,甚至某些情况下可以在提高产量的基础上,减少合成肥料、杀虫剂以及抗生素的使用量。批评家:不是这样的,科学院选择用以研究的农场似乎是使用自然方法最有可能取得成功的农场。那些尝试了这
数学教员指定一些修读微积分课程的学生参加由学生自己组织的研讨班。由于参加研讨班的学生比未参加研讨班的学生在该门课中获得了较高的结业平均成绩,数学系把取得微积分优异成绩的结果归功于参加研讨班。上述数学系的推理以下列哪项为假设?
有医学病例证明,饲养鸽子或者经常近距离接触容易感染隐球菌性肺炎。隐球菌既有可能存在于鸽粪中,也可能通过空气进行传播,此外,经常与隐球菌携带者接触也有可能因被感染而发病。同时有隐球菌健康携带者的存在。小张患了急性肺炎,经医生诊断为隐球菌性肺炎。如果以上断定为
已知x>0,函数y=2/x+3x2的最小值是()。
一个体积为160cm3的长方体中两个侧面的面积分别为20cm2和32cm2,如图所示,则这个长方体底面的面积(即图中阴影部分的面积)为()。
计算下列不定积分:
随机试题
Forthispart,youareallowed30minutestouniteashortessayentitled"IsGoodAppearanceMoreImportantthanCapability?".
A.脑膜刺激征阳性B.皮肤有出血点C.呕吐、脓血便D.惊厥停止后神志即恢复正常E.肢体瘫痪中毒性痢疾合并脑病的临床特点是
关于民事法律行为成立条件的说法,错误的是()。
海关行政裁定的对象为与拟进口或出口货物有关的进出口行为。()
下列属于市场风险的管控手段的有()。
某政府向土地购买者甲征收土地税,甲将预期应该缴纳的土地税在买家中预先扣除,将税负转嫁给土地出售者乙,这种税负转嫁方式称为()。
所谓国家安全,即我国人民民主专政政权和社会主义制度不受侵犯,我国的国家主权和领土完整不受侵犯。()
服务大局
确定常数a,c,使得,其中c为非零常数.
Inthe1960s,medicalresearchersThomasHolmesandRichardRahedevelopedachecklistofstressfulevents.Theyappreciatedthe
最新回复
(
0
)