首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{fn}为[0,1]上的连续函数列,满足 fn(x)≤fn+1(x)≤0 (x∈[0,1]),n=1,2,…. 且fn(x)=0,证明{fn}在[0,1]上一致收敛.
设{fn}为[0,1]上的连续函数列,满足 fn(x)≤fn+1(x)≤0 (x∈[0,1]),n=1,2,…. 且fn(x)=0,证明{fn}在[0,1]上一致收敛.
admin
2022-11-23
29
问题
设{f
n
}为[0,1]上的连续函数列,满足
f
n
(x)≤f
n+1
(x)≤0 (x∈[0,1]),n=1,2,….
且
f
n
(x)=0,证明{f
n
}在[0,1]上一致收敛.
选项
答案
由[*]f
n
(x)=0知,对任意的ε>0,x∈[0,1],存在N(x)∈N
+
,有f
N(x)
(x)>-ε.又由{f
n
}为[0,1]上的连续函数列,故存在δ(x)>0,对任意的t∈U(x;δ(x)),有-ε<f
N(x)
(t)≤0.令G={U(x;δ(x)|x∈[0,1]},则G是[0,1]的一个开覆盖,由有限覆盖定理知,存在U(x
k
;δ(x
k
))∈G(k=1,2,…,m)使得[*]U(x
k
;δ(x
k
))[*][0,1].注意到对每一个t∈[0,1],{f
n
(t)}为单调递增数列,现令[*],则对任意的n>N,t∈[0,1].存在k∈{1,2,…,m},有t∈U(x
k
;δ(x
k
)),从而 -t<[*](t)≤f
N
(t)≤f
n
(t)≤0. 即{f
n
}在[0,1]上一致收敛于0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JugD777K
0
考研数学二
相关试题推荐
“别忘了带雨伞。”如果进行层次切分,第一次切分后两个直接成分是什么关系?()
几个性别相同、年龄相仿的熟人在隔擘说话,能听得出说话人是张三还是李四,这主要是由于各人的()。
某酒店建立了房客信息数据库,但因自身技术人员的疏忽存在系统漏洞。网民王某利用上述漏洞获取了该酒店房客信息,并将这些信息在网上公开,导致房客孙某因个人信息泄露遭受损失。孙某的损失应当由
甲、乙订立合同,约定甲应于2019年8月1日交货,乙应于同年8月7日付款。7月底,甲发现乙财产状况恶化,没有付款能力,并且有确切证据予以证明,甲便中止履行。后乙在合理期限内无力履约。对此,下列表述正确的是()。
x1,x2是方程6x2-7x+a=0的两个实数根,若x1/x22,x2/x12的几何平均值是,则a的值是().
等差数列{an)的前n项和为Sn,若S12<0,S13>0,那么Sn取最小值时,n为().
A、条件收敛B、绝对收敛C、发散D、敛散性不确定B
求下列不定积分:∫x2arcsinxdx.
求下列不定积分:∫(2x-1)cos3xdx;
计算下列不定积分:
随机试题
人民法院、人民检察院和公安机关对于符合逮捕条件,有下列哪些情形的犯罪嫌疑人、被告人。可以监视居住?()
张老师在使用word编制试卷时,需要将试卷中所有的“不正确”三个字都加上着重号。若要批量完成这个任务,可使用Word软件中的()。
__________是TCP/IP簇网络层的核心,是Internet能够有效运行的基础。
女性,56岁。慢性肝炎病史20年患者。双上肢皮肤可见小动脉末端分支性扩张形成的血管痣,大小约2cm。应诊断为
下列属于钢筋连接方法的是()。
下列关于小导管注浆支护设计的要求中,正确的有()。
下列各项不属于物流基本功能的是()。
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
关于无线微波扩频技术,以下______是错误的。
Manyphrasesusedtodescribemonetarypolicy,suchas"steeringtheeconomytoasoftlanding"or"atouchonthebrakes",mak
最新回复
(
0
)