首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
admin
2016-09-13
77
问题
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
选项
答案
f(x)=f(x
0
)+fˊ(x
0
)(x-x
0
)+[*]fˊˊ(x
0
)(x-x
0
)
2
+[*]fˊˊˊ(η)(x-x
0
)
3
. 取x
0
=0,x=1代入, f(1)=f(0)+[*]fˊˊ(0)(1-0)
2
+[*]fˊˊˊ(η
1
)(1-0)
3
,η
1
∈(0,1). ① 取x
0
=0,x=-1代入, f(-1)=f(0)+[*]fˊˊ(0)(-1-0)
2
+[*]fˊˊˊ(η
2
)(-1-0)
3
,η
2
∈(-1,0). ② 由①-②有 f(1)-f(-1)=[*][fˊˊˊ(η
1
)+fˊˊˊ(η
2
)]=1-0. ③ 因为fˊˊˊ(x)在[-1,1]上连续,则存在m和M,使得[*]x∈[-1,1],有m≤fˊˊˊ(x)≤M, m≤fˊˊˊ(η
1
)≤M,m≤fˊˊˊ(η
2
)≤M=>m≤[*][fˊˊˊ(η
1
)+fˊˊˊ(η
2
)]≤M. ④ ③代入④式,有m≤3≤M,由介值定理,[*]ξ∈[-1,1],使得fˊˊˊ(ξ)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/KDT4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
证明[*]
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
证明:抛物面z=x2+y2+1上任一点处的切平面与曲面z=x2+y2所围成的立体的体积为一定值.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
设是两条异面直线;(1)求l1与l2的公垂线方程;(2)l1与l2的距离.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
随机试题
车尔尼雪夫斯基认为“形象在美的领域中占着统治地位”,这说明【】
在市场经济条件下,公路运输的组织形式不包括()
PowerPoint2010中,可以单击_____________选项卡“幻灯片”组中的“新建幻灯片”按钮,添加新幻灯片。
∫-aaf(x)dx=∫0af(x)dx+p,则p=()
大黄牡丹汤中配伍大黄的主要目的是
结肠CT扫描的适应证不包括
男性患者,37岁,以“颜面及躯干皮疹伴双手遇冷发凉、变紫1年,加重伴发热1周”来诊。治疗上错误的是
有关青春期后女孩生殖器官发育哪项正确
按照税负差异理论,在进行个税股利决策的税收策划时,股份制企业应该选择的方式是()。
随着车辆的迅速增加,道路更加拥挤不堪,交通事故也在明显上升。因此,道路拥挤是事故明显上升的主要原因。最能支持上述论断的是:
最新回复
(
0
)