首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Genetically Modified Foods—Feed the World? If you want to spark a heated debate at a dinner party, bring up the topic about
Genetically Modified Foods—Feed the World? If you want to spark a heated debate at a dinner party, bring up the topic about
admin
2013-09-26
83
问题
Genetically Modified Foods—Feed the World?
If you want to spark a heated debate at a dinner party, bring up the topic about genetically modified foods. For many people, the concept of genetically altered, high-tech crop production raises all kinds of environmental, health, safety and ethical questions. Particularly in countries with long agrarian traditions—and vocal green lobbies—the idea seems against nature.
In fact, genetically modified foods are already very much a part of our lives. A third of the corn and more than half the soybeans and cotton grown in the U. S. last year were the product of biotechnology, according to the Department of Agriculture. More than 65 million acres of genetically modified crops will be planted in the U. S. this year. The genetic is out of the bottle.
Yet there are clearly some very real issues that need to be resolved. Like any new product entering the food chain, genetically modified foods must be subjected to rigorous testing. In wealthy countries, the debate about biotech is tempered by the fact that we have a rich array of foods to choose from—and a supply that far exceeds our needs. In developing countries desperate to feed fast-growing and underfed populations; the issue is simpler and much more urgent: Do the benefits of biotech outweigh the risks?
The statistics on population growth and hunger are disturbing. Last year the world’s population reached 6 billion. And by 2050, the UN estimates, it will be probably near 9 billion. Almost all that growth will occur in developing countries. At the same time, the world’s available cultivable land per person is declining. Arable land has declined steadily since 1960 and will decrease by half over the next 50 years, according to the International Service for the Acquisition of Agri-Biotech Applications (ISAAA).
How can biotech help?
Biotechnologists have developed genetically modified rice that is fortified with beta-carotene(β-胡萝卜素)—which the body converts into vitamin A—and additional iron, and they are working on other kinds of nutritionally improved crops. Biotech can also improve farming productivity in places where food shortages are caused by crop damage attribution to pests, drought, poor soil and crop viruses, bacteria or fungi(真菌).
Damage caused by pests is incredible. The European corn borer, for example, destroys 40 million tons of the world’s corn crops annually, about 7% of the total. Incorporating pest-resistant genes into seeds can help restore the balance. In trials of pest-resistant cotton in Africa, yields have increased significantly. So far, fears that genetically modified, pest-resistant crops might kill good insects as well as bad appear unfounded.
Viruses often cause massive failure in staple crops in developing countries. Two years ago, Africa lost more than half its cassava(树薯)crop—a key source of calories—to the mosaic virus. Genetically modified, virus-resistant crops can reduce that damage, as can drought-tolerant seeds in regions where water shortages limit the amount of land under cultivation. Biotech can also help solve the problem of soil that contains excess aluminum, which can damage roots and cause many staple-crop failures. A gene that helps neutralize aluminum toxicity(毒性)in rice has been identified.
Many scientists believe biotech could raise overall crop productivity in developing countries as much as 25% and help prevent the loss of those crops after they are harvested.
Yet for all that promise, biotech is far from being the whole answer. In developing countries, lost crops are only one cause of hunger. Poverty plays the largest role. Today more than 1 billion people around the globe live on less than 1 dollar a day. Making genetically modified crops available will not reduce hunger if farmers cannot afford to grow them or if the local population cannot afford to buy the food those farmers produce.
Biotech has its own "distribution" problems. Private-sector biotech companies in the rich countries carry out much of the leading-edge research on genetically modified crops. Their products are often too costly for poor farmers in the developing world, and many of those products won’t even reach the regions where they are most needed. Biotech firms have a strong financial incentive to target rich markets first in order to help them rapidly recoup the high costs of product development. But some of these companies are responding to needs of poor countries.
More and more biotech research is being carried out in developing countries. But to increase the impact of genetic research on the food production of those countries, there is a need for better collaboration between government agencies—both local and in developed countries—and private biotech firms. The ISAAA, for example, is successfully partnering with the U. S. Agency for International Development, local researches and private biotech companies to find and deliver biotech solutions for farmers in developing countries.
Will "Franken-foods" feed the world?
Biotech is not a panacea(治百病的药), but it does promise to transform agriculture in many developing countries. If that promise is not fulfilled, the real losers will be their people, who could suffer for years to come.
The world seems increasingly to have been divided into those who favor genetically modified foods and those who fear them. Advocates assert that growing genetically altered crops can be kinder to the environment and that eating foods from those plants is perfectly safe. And, they say, genetic engineering—which can induce plants to grow in poor soils or to produce more nutritious foods—will soon become an essential tool for helping to feed the world’s burgeoning(迅速发展的)population. Skeptics contend that genetically modified crops could pose unique risks to the environment and to health—risks too troubling to accept placidly. Taking that view, many European countries are restricting the planting and importation of genetically modified agricultural products. Much of the debate hinges on perceptions of safety. But what exactly does recent scientific research say about the hazards?
Two years ago in Edinburgh, Scotland, eco-vandals stormed a field, crushing canola plants. Last year in Maine, midnight raiders hacked down more than 3,000 experimental poplar trees. And in San Diego, protesters smashed sorghum and sprayed paint over greenhouse walls.
This far-flung outrage took aim at genetically modified crops. But the protests backfired; all the destroyed plants were conventionally bred. In each case, activists mistook ordinary plants for genetically modified varieties.
It’s easy to understand why. In a way, genetically modified crops—now on some 109 million acres of farmland worldwide—are invisible. You can’t see, taste or touch a gene inserted into a plant or sense its effects on the environment. You can’t tell, just by looking, whether pollen containing a foreign gene can poison butterflies or fertilize plants miles away. That invisibility is precisely what worries people. How, exactly, will genetically modified crops affect the environment—and when will we notice?
Advocates of genetically modified or transgenic crops say the plants will benefit the environment by requiring fewer toxic pesticides than conventional crops. But critics fear the potential risks and wonder how big the benefits really are. "We have so many questions about these plants," remarks Guenther Stotzky, a soil microbiologist at New York University. "There’s a lot we don’t know and need to find out. "
As genetically modified crops multiply in the landscape, unprecedented numbers of researchers have started fanning into the fields to get the missing information. Some of their recent findings are reassuring; others suggest a need for vigilance.
What was the reason that led to the loss of more than half of African main food two years ago?
选项
A、Drought.
B、Toxin in the crop.
C、The mosaic virus.
D、The barren soil.
答案
C
解析
转载请注明原文地址:https://kaotiyun.com/show/Km27777K
0
大学英语六级
相关试题推荐
VideogameshavebecomeincreasinglypopularinbotharcadesandtheaverageAmericanhome.Peopleofallagesandfromallwalk
Entertheinformationage.Informationistherawmaterialformanyofthebusinessactivities【C1】______thisnewera,justasir
Millionsofyoungpeoplearecreatingblogs.Millionsofothersarcreadingthem.Theword"blog"isashortwayofsayingWeb
A、Americanpresidents’interventionintelevisionprograms.B、Americanpresidents’favoritetelevisionprograms.C、Televisionde
AreWeTurningintoaNationofLoners?Marriageisdown,andsoischildbirth.Butdivorceisup,alongwithsingle-person
Dr.GregoryConnollyisdirectoroftheofficefornonsmokingandhealthintheMassachusettspublichealthdepartment.Hesaid
TheInternationalOlympicCommitteechoseadoctorfromBelgiumasits【B1】______JacquesRoggewillserveatleasteightyears.
Itiscommonlyheldthatdrinkingmoderateamountsofalcoholcanreducetheoddsofhavingadeadlyheartattack.More【B1】_____
Knowledgemaybeacquiredthroughconversation,watchingtelevisionortravelling,butthedeepestandmostconsistentwayisth
A、Tiredness.B、Freedom.C、Loneliness.D、Fear.D
随机试题
水解后呈伯胺发生重氮化偶合反应的药物是
真实反映材料在口腔环境中的受力与弯曲、形变情况的是表征材料表面局部区域抵抗压缩变形和断裂的能力是
男性,26岁,2年来尿频、尿急、尿痛伴间歇性终末血尿,有时尿混浊,一般抗生素治疗无效。尿液检查:脓球40~50个HP,红细胞20~30个/HP,蛋白(+)。静脉尿路造影左肾未显影,右肾轻度积水,尿结核菌检查三次(+),肾功能正常,测膀胱容量100ml。
为了保护城市环境,保证城市台阶式用地的土(石)稳定,要求台地间设置护坡或挡土墙。同时,在高差大于()的挡土墙或护坡顶要加设防护栏。
在商业银行风险管理理论的管理模式中,不包括()。
四川省人民政府关于同意撤销南溪县设立宜宾市南溪区的批复川府函[2011]55号宜宾市人民政府:你市《关于撤销南溪县设立宜宾市南溪区的请示》(宜府[2010]10
如何运用价值链分析方法帮助企业进行战略决策?
在一次聚会上,10个吃了水果沙拉的人中,有5个很快出现了明显的不适。吃剩的沙拉立刻被送去检验。检验的结果不能肯定其中存在超标的有害细菌。因此,食用水果沙拉不是造成食用者不适的原因。如果上述检验结果是可信的。则以下哪项对上述论证的评价最为恰当?
下列链表中,其逻辑结构属于非线性结构的是
数据库系统在其内部具有3级模式,用来描述数据库中全体数据的全局逻辑结构和特性的是()。
最新回复
(
0
)