首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)一1A是对称矩阵.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)一1A是对称矩阵.
admin
2017-10-21
30
问题
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)
一1
A是对称矩阵.
选项
答案
(E+AB)
一1
A对称,就是[(E+AB)
一1
A]
T
=(E+AB)
一1
A. [(E+AB)
一1
A]
T
=A[(E+AB)
一1
]
T
=A[(E+AB)
T
]
一1
=A(E+BA)
一1
. 于是要证明的是 (E+AB)
一1
A=A(E+BA)
一1
. 对此式作恒等变形: (E+AB)
一1
A=A(E+BA)
一1
[*]A=(E+AB)A(E+BA)
一1
(用E+AB左乘等式两边) [*]A(E+BA)=(E+AB)A (用E+BA右乘等式两边). 等式A(E+BA)=(E+AB)A.显然成立,于是(E+AB)
一1
A=A(E+BA)
一1
成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/KpH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn,α1线性无关.
设α1,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设b>a>0,证明:
设的逆矩阵A—1的特征向量.求x,y,并求A—1对应的特征值μ.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
参数a取何值时,线性方程组有无穷多个解?求其通解.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
,求A的全部特征值,并证明A可以对角化.
随机试题
葡萄酒斑状血管瘤属于
患者因红斑狼疮出现眼睑、下肢浮肿,胸胁胀满,面色无华;腰膝酸软,面热肢冷,口干;舌淡胖,苔少,脉沉细.其中医辨证为()
下列事项中,可能引起资本公积变动的有()。
2014年1月1日,甲公司从二级市场购入乙公司分期付息、到期还本债券面值l200元,支付价款1050万元,另支付相关交易费用12万元。该债券系乙公司于2014年1月1日发行,期限为3年,票面年利率为5%。甲公司拟持有该债券至到期,甲公司持有乙公司债
茂腔是山东独特的地方戏曲。由茂腔经典剧目《墙头记》改编制作而成的茂腔动漫剧既具有浓郁的民俗风情又不乏时尚元素,深受观众喜爱。材料反映的文化生活道理是()。
公安机关的人民警察因履行职责的紧急需要,经(),可以优先乘坐公共交通工具,遇交通阻碍时,优先通行。
《宪法》第一条规定:“中华人民共和国是工人阶级领导的、以工农联盟为基础的人民民主专政的社会主义国家。”这条规定表明了我国的()。
掌握辩证唯物主义和历史唯物主义,从本质意义上是使人()。
两个相同的瓶子装满某种化学溶液,一个瓶子中溶质与水的体积比是3:1.另一个瓶子中溶质与水的体积比是4:1,若把两瓶化学溶液混合,则混合后的溶质和水的体积之比是:
简述贪污罪的概念及犯罪构成。
最新回复
(
0
)