首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
admin
2016-06-27
113
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(1)利用反证法.假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔中值定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立. 接着再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔中值定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g”(ξ
3
)=0成立,这与题设条件g”(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0. (2)构造函数F(x)=f(x)g’(x)一g(x)f’(x),由题设条件得,函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0.根据罗尔中值定理可知,存在点ξ∈(a,b),使得F’(ξ)=0. 即 f(ξ)g”(ξ)一f”(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/LTT4777K
0
考研数学三
相关试题推荐
1982年宪法施行后,根据我国改革开放和社会主义现代化的实践和发展,在党中央领导下,全国人大于1988年、1993年、1999年、2004年、2018年先后五次,对1982年宪法即我国现行宪法的个别条款和部分内容作出必要的、也是十分重要的修正,共通过了52
先进的生产关系之所以能够促进生产力的发展,就在于()。
某学者认为,唯物辩证法蕴涵三重智慧:“两面神”思维,助你走出牛角尖;把握条件,看法才能准确;创造条件,主动促进矛盾双方的转化。从整体上把握这三重智慧,要求我们()。
传统教科书上说,人类的进化过程是一条直线,从最开始的爬行猿类,到最终的现代直立智人。然而,中国科学家运用新一代基因测序技术分析古代DNA时发现,人类进化过程并非这样井然有序,他们存在的时间点有交集,而且这种交集还较多。这表明()。
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
利用高斯公式计算第二类曲面积分:
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
设f(x)=xsinx+cosx,下列命题中正确的是
随机试题
苯二氮革类的中枢抑制作用机制是
参与DNA复制的酶不包括
用混凝土泵输送混凝土是()。
当事人之间发生合同纠纷对仲裁机构的裁决不满意时( )。
施工投资项编码/施工成本项编码,并不是概预算定额确定的分部分项工程的编码,它应综合考虑的因素包括()。
上市公司实际控制人及受其支配的股东未履行报告、公告义务的,上市公司应当自(、)起立即作出报告和公告。
下列消费品中,我国对其征收消费税的有()。
企业发生的下列交易或事项中,不会引起当期资本公积(资本溢价)发生变动的是()。(2013年)
Ifyougodowntothewoodstoday,youmaymeethigh-techtrees—geneticallymodifiedtospeedtheirgrowthorimprovethequalit
Whatdoweknowfromtheconversation?
最新回复
(
0
)