首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
admin
2016-06-27
94
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g”(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(1)利用反证法.假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔中值定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立. 接着再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔中值定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g”(ξ
3
)=0成立,这与题设条件g”(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0. (2)构造函数F(x)=f(x)g’(x)一g(x)f’(x),由题设条件得,函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0.根据罗尔中值定理可知,存在点ξ∈(a,b),使得F’(ξ)=0. 即 f(ξ)g”(ξ)一f”(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/LTT4777K
0
考研数学三
相关试题推荐
历史虚无主义思潮,认为中国传统道德从整体上来说在今天已经失去了价值和意义,不能满足我国现代化建设的需要,必须从整体上予以全盘否定。这一思潮()。
材料1 (1)没收一切土地归苏维埃政府所有,分配农民个别耕种。(2)一切土地,经苏维埃政府没收并分配后,禁止买卖。(3)分配土地后,除老幼疾病没有耕种能力及服务与公众勤务这以外,其余的人必须强制劳动。(4)以人口为标准分配土地。男女老幼平均分配。(5)
戊戌政变后,新政大部分被废除,保留下来的是()。
民主管理权利是指公民根据宪法法律规定,管理国家事务、经济和文化事业以及社会事务的权利。公民行使民主管理权利的实现方式包括()。
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求下列函数的指定的高阶偏导数:
证明:存在的充分必要条件是f(x)在x。处的左、右极限都存在并且相等.
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
设,求f(x)的间断点并分类.
利用洛必达法则,有[*]
随机试题
肋间后静脉直接注入()
在消化期促进肝细胞分泌胆汁最重要的刺激是
有关Goldmann眼压计叙述错误的是
特发性血小板减少性紫癜病人的最重要的护理措施是观察和预防
我国生产及使用的麻醉药品有( )。
河段功能类别为Ⅳ类和Ⅲ类,设计枯水流量条件下,采用首断面和末断面控制,氨氮浓度沿程控制线如下图,功能区河长达标率大于零的控制线有()。
国际上汇票的抬头通常有三种写法,即()。
按照金融期货投资者适当性制度的要求,期货公司不得为综合评估得分在()分以下(不含)的投资者申请开立交易编码。
()是当前我国调整劳动关系的主要依据。
维也纳会议的决议:恢复欧洲旧的统治秩序,维持_______、_______两个国家的分裂局面;限制法国,保证欧洲均势;重新划分欧洲版图,分割海外殖民地。
最新回复
(
0
)