首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
admin
2016-10-20
49
问题
设有微分方程y’-2y=φ(x),其中φ(x)=
试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
选项
答案
这是一个一阶线性非齐次微分方程,由于其自由项为分段函数,所以应分段求解,并且为保持其连续性,还应将其粘合在一起. 当x<1时,方程y’-2y=2的两边同乘e
-2x
得(ye
-2x
)’=2e
-2x
,积分得通解y=C
1
e
2x
-1; 而当x>1时,方程y’-2y=0的通解为y=C
2
e
2x
. 为保持其在x=1处的连续性,应使C
1
e
2
-1=C
2
e
2
,即C
2
=C
1
-e
-2
,这说明方程的通解为 [*] 再根据初始条件,即得C
1
=1,即所求特解为y= [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/LeT4777K
0
考研数学三
相关试题推荐
5/8.
设A与B均为n,阶矩阵,且A与B合同,则().
设P(x1,y1)是椭圆外的一点,若Q(x2,y2)是椭圆上离P最近的一点,证明PQ是椭圆的法线.
求下列隐函数的指定偏导数:
求由下列方程所确定的隐函数y=y(x)的导数dy/dx:(1)y=1-xey;(2)xy=ex+y;(3)xy=yx;(4)y=1+xsiny.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A、B为两随机事件,且B∈A,则下列结论中肯定正确的是().
计算下列各题:(I)由方程xy=yx确定x=x(y),求(Ⅱ)方程y-xey=1确定y=y(x),求y’’.(Ⅲ)
随机试题
下列哪项不是神经系统疾病病人常见的症状、体征
下列关于罂粟壳的说法错误的是
2014年6月1日,家住北京市通州区的韩某乘坐MH360航班从马来西亚飞回北京。飞机中途失事,至今下落不明。韩某妻子何某欲将儿子小韩送养以便再嫁。韩某的父母不知如何处理,咨询刘律师。关于刘律师的答复,下列哪一说法是正确的?()[2018
某在用圬工拱桥,位于厂区主干道,交通繁忙且重车较多,受业主委托,需对进行桥梁承载能力的检测评定,试完成以下相关分析和检测评定。为获取承载能力检算所需的各分项检算系数,以下()工作是必须完成的。
根据证券法律制度的规定,下列各项中,属于重大事件的有()。
甲公司欲进军非洲市场,考虑到市场环境的差异,决定对总体环境进行详尽分析。下列选项中,属于对社会和文化环境中人口方面问题进行分析时通常考虑的因素是()。
钟老师在班上设立“进步展示台”,分类展示在不同方面有进步的学生。这表明钟老师()。
科学发展观是按照“统筹城乡发展、统筹区域发展、统筹()发展、统筹人与自然和谐发展、统筹国内发展和对外开放”的要求推进各项事业的改革和发展的一种方法论,是中国共产党的重大战略思想。
符合以下________条件的,可以用二分法查找。
Mr.Reeceisinterestingoldman.Mr.Reeceworked【C1】______afarm.Heandhiswife【C2】______alotofthingsandtheyhadsomec
最新回复
(
0
)