首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
admin
2017-06-08
45
问题
设α
1
,α
2
,α
3
都是n维非零向量,证明:α
1
,α
2
,α
3
线性无关<=>对任何数s,t,α
1
+sα
3
,α
2
+tα
3
都线性无关.
选项
答案
“=>”用定义法也不麻烦(请读者自己做),但是用C矩阵法更加简单. α
1
+sα
3
,α
2
+tα
3
对α
1
,α
2
,α
3
的表示矩阵为 [*] 显然对任何数s,t,C的秩都是2,于是α
1
+sα
3
,α
2
+tα
3
的秩为2,线性无关. “<=”在s=t=0时,得α
1
,α
2
线性无关,于是(根据定理3.2)只要再证明α
3
不可用α
1
,α
2
线性表示.用反证法.如果α
3
可以用α
1
,α
2
线性表示,设 α
3
=c
1
α
1
+c
2
α
2
, 则因为α
3
不是零向量,c
1
,c
2
不能全为0.不妨设c
1
≠0,则有 [*] 于是α
1
-[*]α
3
,α
2
线性相关,即当s=[*],t=0时α
1
+sα
3
,α
2
+tα
3
相关,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/M0t4777K
0
考研数学二
相关试题推荐
7/24
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
[*]
设,问a,b为何值时,函数F(x)=f(x)+g(x)在﹙﹣∞,﹢∞﹚上连续。
若f(x)是连续函数,证明
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
随机试题
链斗挖泥船的斗链运转速度与所挖土质有关,极软土的斗链运转速度为()斗/min。
国家安全是安邦定国的重要基石,维护国家安全是全国各族人民根本利益所在。党的十八大以来,为了推进国家治理体系和治理能力现代化,实现国家长治久安,更好适应我国国家安全面临的新形势新任务,我们党明确提出了总体国家安全观。总体国家安全观的根本是()
ThefirstEuropeanstockexchangewasestablishedinAntwerp,Belgium(比利时),in1531.TherewerenostockexchangesinEnglandun
以下关于患者角色所具有的特征不包括
关于真核生物mRNA转录后加工的说法错误的是
A、地高辛B、洋地黄毒苷C、乙胺丁醇D、异烟肼E、呋塞米伴有肝病的结核患者治疗结核可以使用()
阅读下面这首宋词,完成后面的题目。八声甘州辛弃疾夜读《李广传》,不能寐。因念晁楚老、杨民瞻①约同居山间,戏用李广事,赋以寄之。故将军饮罢夜归来,长亭解雕鞍。恨灞陵醉尉,匆匆未识,桃李无言。射虎山横一骑,裂石响惊弦。落魄封侯事
以下几种现象中,能够典型表现“注意的集中性”的是()
normalizedrelations
A.interactionB.experiencedC.reflectD.responseE.undertakenF.affectG.althoughH.frustra
最新回复
(
0
)