两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.

admin2016-10-20  38

问题 两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.

选项

答案[*]

解析 每位射手的射击只有两个基本结果:中与不中,因此两射手的每次射击都是一个伯努利试验.每位射手直到他有一次命中时方停止射击,因此此时的射击次数应服从几何分布;此时的射击次数-1=未击中的次数.以Xi表示第i名射手首次命中时的脱靶数,则此时他的射击次数Xi+1服从参数为pi的几何分布,因此P{Xi=k}=(1-pi)kpi,i=1,2,且E(Xi+1)=,i=1,2,于是EXi=E(Xi+1)-1=-1,两射手脱靶总数X=X1+X2的期望为
转载请注明原文地址:https://kaotiyun.com/show/M4T4777K
0

相关试题推荐
最新回复(0)