首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3 证明:α,Aα,A2α线性无关;
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3 证明:α,Aα,A2α线性无关;
admin
2014-02-06
89
问题
已知A是3阶矩阵,α(i=1,2,3)是3维非零列向量,若Aα
i
=iα
i
(i=1,2,3),令α=α
1
+α
2
+α
3
证明:α,Aα,A
2
α线性无关;
选项
答案
由Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,且α
1
,α
2
,α
3
非零可知,α
1
,α
2
,α
3
是A的不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关.又Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,若k
1
α+k
2
Aα+k
3
A
2
α=0,即k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0,则(k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0.由α
1
,α
2
,α
3
线性无关,得齐次线性方程组[*]因为系数行列式为范德蒙行列式且其值不为0,所以必有k
1
=k
2
=k
3
=0,即α,Aα,A
2
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/M7F4777K
0
考研数学三
相关试题推荐
新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾。影响满足人们美好生活需要的因素很多,但主要是发展的不平衡不充分问题。发展不平衡,主要指各区域各领域各方面发展不平衡,制约了全国发展水平提升。发展不充分,主要指一些地
党的十九大报告指出,要推动形成全面开放新格局。中国开放的大门不会关闭,只会越开越大。要以“一带一路”建设为重点,坚持引进来和走出去并重,遵循共商共建共享原则,加强创新能力开放合作,形成()。
“就在21世纪的钟声即将敲响之前.从神州大地上消除了最后一块帝国主义侵略造成的殖民地的残痕,完整而彻底地完成了民族独立的历史使命。”完成这一历史使命的根本保证是()
“薛定谔的猫”被称为物理学上的四大神兽之一。薛定谔是量子力学的奠基人之一。他为了展示微观领域的量子叠加(一个量子系统可以处在不同量子态的叠加态上),创建了量子力学思维实验。将一只猫关在装有少量镭和氰化物的密闭容器里,镭的衰变存在概率,如果镭发生衰变,会触发
新华社深圳6月23日电,当日21时35分,随着168小时试运行试验圆满完成,()6号机组正式具备商业运行条件,这也标志着该核电站一期和二期工程共6台机组全面投产,总装机容量超过671万千瓦,成为我国目前在运装机容量最大的核电站。
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
求下列隐函数的指定偏导数:
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
随机试题
关于慢性病的定义,叙述正确的是
按照联合国的规定,老年型社会是指
设计使用年限是设计规定的结构或构件不需进行()即可按预定要求使用的年限。
下列关于工程定额说法,正确的是()。
“国策基准”
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
路由汇聚(Route Summarization)是把小的子网汇聚成大的网络,下面4个子网: 172.16.193.0/24、172.16.194.0/24、172.16.196.0/24和172.16.198.0/24,进行路由汇聚后的网络地址是(25)
下图是网络地址转换NAT的一个实例根据图中信息,标号④下的方格中的内容应为()。
TheWestLakeissobeautifulplacethatitattractsthousandsoftouristseveryyear.
"HereisthemoneyIpromised,"hesaid,"Ialways______mypromise."
最新回复
(
0
)