首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
admin
2016-12-30
80
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函势[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,[*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即[*] 所以f(B)-f(A)=f’(ξ)(b—a)。任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
0
∈(0,x
0
)c(0,δ),使得[*] 又由于[*],对(*)式两边取x
0
→0+时的极限: [*] 故f
+
’(0)存在,且f
+
’(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/MJt4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]
设f(x)在x=2处连续,且,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设f(x)二阶连续可导,f"(0)=4,
设u=f(x,y,z),ψ(x2,ey,z)=0,y=sinx,其中f,ψ都具有一阶连续偏导数,且0,求.
计算,其中D是由抛物线y2=x与直线y=x所围成的区域。
在已给的椭球面内一切内接的长方体(各边分别平行坐标轴)中,求其体积最大者。
设f(x)为二阶可导的奇函数,当x∈(0,+∞)时,f’(x)>0,f"(x)>0,则当x∈(-∞,0)时().
求下列极限:
随机试题
Two-LayerSystemPersonalityistoalargeextentinherent.A-typeparentsusuallybringaboutA-type【W1】______.Buttheenvir
生物群落对其周围环境产生重大影响,并形成__________。
下列关于速度标尺的调节,错误的是
按照世界卫生组织国际分类法(ICIDN),疾病或外伤引起的解剖结构、生理及心理功能暂时、永久丧失或异常应是
A、紧密结合临床B、内容广泛多样C、更新传递快速D、做到去伪存真E、提高药学水平药物信息包括药事法规和药品价格,这说明药物信息()
由于预警信息系统完成将原始信息向征兆信息转化的功能,因此要求()必须满足相应的要求条件。
2015年12月31日,甲公司对外出租的一栋办公楼(作为投资性房地产核算)的账面原值为7000万元,已提折旧为200万元,未计提减值准备,且计税基础与账面价值相同。2016年1月1日,甲公司将该办公楼由成本模式计量改为公允价值模式计量,当日公允价值为8
小明为班级购买笔记本和圆珠笔,已知他有100元钱可供使用,若购买30个笔记本、20支网珠笔,则剩余8元;若购买25个笔记本、25支圆珠笔,则剩余12.5元.设笔记本和圆珠笔的单价分别为a、b,则根据题意所列的方程组为__________.
你对“一切向钱看”有什么看法?
A、Hopingtogetpositiveremarksfromothers.B、Neverbeingsatisfiedwithothers’feedbacks.C、Beingafraidtomakeanymistake
最新回复
(
0
)