首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明: (1)存在x1∈[0,1],使得|f(x1)|>4; (2)存在x2∈[0,1],使得|f(x2)|=4.
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明: (1)存在x1∈[0,1],使得|f(x1)|>4; (2)存在x2∈[0,1],使得|f(x2)|=4.
admin
2022-06-04
65
问题
设函数f(x)在[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
xf(x)dx=1,证明:
(1)存在x
1
∈[0,1],使得|f(x
1
)|>4;
(2)存在x
2
∈[0,1],使得|f(x
2
)|=4.
选项
答案
因为函数f(x)在[0,1]上连续,所以|f(x)|在[0,1]上也连续,进而|f(x)|可以取得最大值M.又若|f(x)|≡M,则f(x)≡±M,根据条件∫
0
1
f(x)dx=0.可得M=0,那么∫
0
1
xf(x)dx=0,这与已知条件矛盾.因此|f(x)|>0. (1)根据已知条件 [*] 即M≥4.注意到∫
0
1
f(x)dx=0,故M>4,存在一点x
1
∈[0,1],使得|f(x
1
)|=M>4. (2)如果对于一切x∈[0,1]均有|f(x)|>4,由函数的连续性可知,对于一切x∈[0,1],有f(x)>4恒成立或者f(x)<-4恒成立.无论哪种情形,都与已知条件∫
0
1
f(x)dx=0矛盾.因此至少存在一点ξ,使得|f(ξ)|≤4.若|f(ξ)|=4,取ξ=x
2
,结论证毕.若|f(ξ)|<4,则因为f(x)在以x
1
与ξ为端点的闭区间上连续,由介值定理可知存在一点x
2
,使得|f(x
2
)|=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/MTR4777K
0
考研数学三
相关试题推荐
设总体X服从(0,θ](θ>0)上的均匀分布,x1,x2,…,xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设随机变量X1,…,Xn(n>1)独立同分布,其方差σ2>0,记(1≤s,t≤n)的值等于()
设常数a>0,求
设C=为正定矩阵,令P=(1)求PTCP;(2)证明:D-BA-1BT为正定矩阵.
求下列极限:
设a1=4,an+1=an存在,并求此极限.
计算下列二重积分:计算xydxdy,其中D={(x,y)|y≥0,x2+y2≤1,x2+y2≤2x}.
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2x在区间(0,1)上服从均匀分布.
随机试题
合金钢的导热性比碳素钢好。()
Dancy:Hello,Fred.What’swrongwithyourarm?Fred:IbrokeitwhenIwasskatingduringtheholiday.Dancy:Oh,No!______Fred:
慢性呼吸衰竭失代偿期给氧的原则是
开发方案是指根据区域或行业发展的()性和()性,划分近期,中期和远期的规划发展重点。
要素的相关性是指要素之间的相互联系、()、()、相互作用、()。
物流信息技术主要由()三大部分组成。
准父母小组属于( )。
列出至少三种在高中美术课堂教学中创设情境的方法。
A、邻居太可恶B、他妨碍了邻居C、邻居不正常D、故意找麻烦B
A、Theycanusethelightmoreeffectively.B、Theyarestrongerthanthecommonmaterials.C、Theycanstoreandreleaseheat.D、T
最新回复
(
0
)