首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Disease and History P1: Epidemiology is the study and analysis of the patterns, causes, and effects of health and disease condit
Disease and History P1: Epidemiology is the study and analysis of the patterns, causes, and effects of health and disease condit
admin
2018-10-18
84
问题
Disease and History
P1: Epidemiology is the study and analysis of the patterns, causes, and effects of health and disease conditions in defined populations. In 1971, anthropologist Abdel Omran outlined three trends in the relationship between diseases and the human species and referred to them as the three "epidemiological transitions." For nearly four million years, humans lived in widely dispersed, nomadic, small populations that minimized the effect of infectious diseases. Early human ancestors must have suffered from new diseases every time they built a settlement in new surroundings. Infectious disease may not have had serious effects on large numbers of people or many different populations, however, since diseases would have had little chance of being passed on to many other humans.
P2: The first epidemiological transition occurred approximately 10,000 years ago, when early societies started to supplement existing food sources with domestication of some plants and animals after their migration. Increasing sedentism and population density resulted in the first widespread infectious and nutritional diseases. Animal domestication may have brought people into contact with new diseases previously limited to other species. Working the soil would have exposed farmers to insects and other pathogens. Irrigation in some areas provided breeding places for mosquitoes, increasing the incidence of malaria and other mosquito-borne diseases. Sanitation problems caused by larger, more sedentary populations would have helped transmit diseases in human waste, as would the use of animal dung for fertilizer. Besides, the emergence of pre-agriculture also led to a relatively narrow selection of food sources, as compared to the varied diets of their nomadic counterparts, whose food was mainly derived from hunting and gathering. This could have led to nutritional deficiencies. Finally, the storage of food surpluses attracted new disease carriers such as insects and rodents. Trade between settled communities helped spread diseases over large geographic areas, as in the case of the Black Death in Europe. Epidemics, in the sense of diseases that impact a great number of populations simultaneously, were essentially nonexistent until the development of agricultural economies.
P3: The second epidemiological transition commenced at the end of the nineteenth century and extended to the twentieth, involving improvements in nutrition, public health, and medicine. Many infectious diseases were finally brought under control or even eliminated during the second phase. There was a shift from acute infectious diseases to chronic non-infectious, degenerative diseases. The increasing prevalence of these chronic diseases was related to an increase in longevity; cultural advances resulted in a larger percentage of individuals reaching the oldest age segment of the population. In addition, many of these diseases shared common etiological factors related to an increasingly sedentary lifestyle, leading to less physical activity, more mental stress, high-fat diets, and environmental pollution.
P4: However, on the heels of the second transition had came the third epidemiological transition, which dominates contemporary society. New diseases are emerging and old ones are returning. The emergence of infectious disease with multiple forms of antibiotic resistance has been one of the most intriguing evolutionary stories of the last decade. Researchers have identified more than two dozen novel pathogens and grappled with the evolution of antibiotic-resistant microbes in the past three decades. This evolution may have been encouraged by what some authorities consider an overuse of antibiotics, giving microorganisms a greater chance to evolve resistance by exposing them to a constant barrage of selective challenges. Some bacteria reproduce hourly, and so the processes of genetic mutation and natural selection are greatly sped up in these species.
P5: The engine that is driving the reemergence of many kinds of disease is ecological change that brings humans into contact with pathogens. As people and their products became more mobile, and as human populations spread into previously little-inhabited areas, cutting down forests and otherwise altering ecological conditions, we come into contact with other species that may carry diseases to which they are immune but that prove deadly to us. This presents a significant challenge to the countries facing a dual burden of infectious and chronic diseases.
P2: The first epidemiological transition occurred approximately 10,000 years ago, when early societies started to supplement existing food sources with domestication of some plants and animals after their migration.■ Increasing sedentism and population density resulted in the first widespread infectious and nutritional diseases. ■ Animal domestication may have brought people into contact with new diseases previously limited to other species.■ Working the soil would have exposed farmers to insects and other pathogens. ■ Irrigation in some areas provided breeding places for mosquitoes, increasing the incidence of malaria and other mosquito-borne diseases. Sanitation problems caused by larger, more sedentary populations would have helped transmit diseases in human waste, as would the use of animal dung for fertilizer. Besides, the emergence of pre-agriculture also led to a relatively narrow selection of food sources, as compared to the varied diets of their nomadic counterparts, whose food was mainly derived from hunting and gathering. This could have led to nutritional deficiencies; finally, the storage of food surpluses attracted new disease carriers such as insects and rodents. Trade between settled communities helped spread diseases over large geographic areas, as in the case of the Black Death in Europe. Epidemics, in the sense of diseases that impact a great number of populations simultaneously, were essentially nonexistent until the development of agricultural economies.
Look at the four squares [■] that indicate where the following sentence could be added to the passage.
But the denser populations of agricultural communities were only one of many factors contributing to the increased risk of disease.
Where would the sentence best fit?
Click on a square [■] to add the sentence to the passage.
选项
答案
B
解析
【句子插入题】空前提到增加的定居人口和更大的群体数量导致了传染病和营养性疾病的增加。插入句说密集的人口和农业社区只是导致疾病增加的原因之一。意思上连贯。
转载请注明原文地址:https://kaotiyun.com/show/MufO777K
0
托福(TOEFL)
相关试题推荐
Choosethecorrectanswer,A,BorC.Whichisnotprovidedforstudentsinmostofthelargebuildings?
Completethetablebelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.Talkingaboutthehistoryofbikes
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.HistoryofweatherforecastingE
Choosethecorrectletter,A,BorC.LabelsgivingnutritionalinformationonfoodpackagingJackprefersthedailyvaluesyst
£6.80本题有关该工作的工资待遇。录音原文中的…isprovided是题目plus…的同义替换。
meals本题有关该工作的工资待遇。录音原文中的with…provided是题目plus…的同义替换。
Whichofthefollowingquestionsdoesthepassagemainlyanswer?Theword"they"inline20refersto
Theword"it"inline3referstoInparagraph3,theauthormakeswhichofthefollowingstatementsaboutaspecies’survival?
随机试题
从展览会的性质看,展览会可划分为()
Itwas______(正是那位著名的科学家)gavemethesuggestion.
能治疗气逆喘咳的药物有
患者,男,65岁。慢性支气管炎及高血压病史10年,近半年活动后自觉气短。检查:血压160/95mmHg(21.3/12.6kPa);心脏听诊未闻及器质性杂音,两肺听诊无异常,心电图及X线显示左心室增大。应首先考虑的是
属于湿法制粒的操作是
[2004年第048题]许多殿宇柱子排列灵活,往往与屋架不做对称的连系,而是用大内额,在内额上排屋架,形成减柱、移柱的做法。以上叙述是哪个朝代建筑的突出特点?
()是安全生产责任的主体,国家有关法律法规对生产经营单位加强安全规章制度建设有明确的要求。
【背景资料】某公司承建的市政道路工程,长2km,与现况道路正交,合同工期为2015年6月1日至8月31日。道路路面底基层设计为300mm水泥稳定土;道路下方设计有一条DN1200mm钢筋混凝土雨水管道,该管道在道路交叉口处与现状道路下的现有DN300mm
企业所得税纳税人发生的佣金,可计入销售费用,但必须同时符合的条件有()。
A、FourthThursdayofDecember.B、FourthTuesdayofNovember.C、FourthThursdayofNovember.D、FifthThursdayofNovember.C细节题。根
最新回复
(
0
)