首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below. Inform
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below. Inform
admin
2014-11-29
13
问题
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below.
Information theory - the big idea
Information theory lies at the heart of everything - from DVD players and the genetic code of DNA to the physics of the universe at its most fundamental It has been central to the development of the science of communication, which enables data to be sent electronically and has therefore had a major impact on our lives
A In April 2002 an event took place which demonstrated one of the many applications of information theory. The space probe, Voyager I, launched in 1977, had sent back spectacular images of Jupiter and Saturn and then soared out of the Solar System on a one-way mission to the stars. After 25 years of exposure to the freezing temperatures of deep space, the probe was beginning to show its age. Sensors and circuits were on the brink of failing and NASA experts realised that they had to do something or lose contact with their probe forever. The solution was to get a message to Voyager I to instruct it to use spares to change the failing parts. With the probe 12 billion kilometres from Earth, this was not an easy task. By means of a radio dish belonging to NASA’s Deep Space Network, the message was sent out into the depths of space. Even travelling at the speed of light, it took over 11 hours to reach its target, far beyond the orbit of Pluto. Yet, incredibly, the little probe managed to hear the faint call from its home planet, and successfully made the switchover.
B It was the longest-distance repair job in history, and a triumph for the NASA engineers. But it also highlighted the astonishing power of the techniques developed by American communications engineer Claude Shannon, who had died just a year earlier. Born in 1916 in Petoskey, Michigan, Shannon showed an early talent for maths and for building gadgets, and made breakthroughs in the foundations of computer technology when still a student. While at Bell Laboratories, Shannon developed information theory, but shunned the resulting acclaim. In the 1940s, he single-handedly created an entire science of communication which has since inveigled its way into a host of applications, from DVDs to satellite communications to bar codes - any area, in short, where data has to be conveyed rapidly yet accurately.
C This all seems light years away from the down-to-earth uses Shannon originally had for his work, which began when he was a 22-year-old graduate engineering student at the prestigious Massachusetts Institute of Technology in 1939. He set out with an apparently simple aim: to pin down the precise meaning of the concept of ’information’. The most basic form of information, Shannon argued, is whether something is true or false - which can be captured in the binary unit, or ’bit’, of the form 1 or 0. Having identified this fundamental unit, Shannon set about defining otherwise vague ideas about information and how to transmit it from place to place. In the process he discovered something surprising: it is always possible to guarantee information will get through random interference - ’noise’ - intact.
D Noise usually means unwanted sounds which interfere with genuine information. Information theory generalises this idea via theorems that capture the effects of noise with mathematical precision. In particular, Shannon showed that noise sets a limit on the rate at which information can pass along communication channels while remaining error-free. This rate depends on the relative strengths of the signal and noise travelling down the communication channel, and on its capacity (its ’bandwidth’). The resulting limit, given in units of bits per second, is the absolute maximum rate of error-free communication given signal strength and noise level. The trick, Shannon showed, is to find ways of packaging up - ’coding’ - information to cope with the ravages of noise, while staying within the information-carrying capacity - ’bandwidth’ - of the communication system being used.
E Over the years scientists have devised many such coding methods, and they have proved crucial in many technological feats. The Voyager spacecraft transmitted data using codes which added one extra bit for every single bit of information; the result was an error rate of just one bit in 10,000 - and stunningly clear pictures of the planets. Other codes have become part of everyday life - such as the Universal Product Code, or bar code, which uses a simple error-detecting system that ensures supermarket check-out lasers can read the price even on, say, a crumpled bag of crisps. As recently as 1993, engineers made a major breakthrough by discovering so-called turbo codes - which come very close to Shannon’s ultimate limit for the maximum rate that data can be transmitted reliably, and now play a key role in the mobile videophone revolution.
F Shannon also laid the foundations of more efficient ways of storing information, by stripping out superfluous (’redundant’) bits from data which contributed little real information. As mobile phone text messages like T CN C U’ show, it is often possible to leave out a lot of data without losing much meaning. As with error correction, however, there’s a limit beyond which messages become too ambiguous. Shannon showed how to calculate this limit, opening the way to the design of compression methods that cram maximum information into the minimum space.
Questions 27-32
Reading Passage 3 has six paragraphs, A-F.
Which paragraph contains the following information?
Write the correct letter, A-F, in boxes 27-32 on your answer sheet.
a reference to what Shannon initially intended to achieve in his research
选项
答案
C
解析
转载请注明原文地址:https://kaotiyun.com/show/MxNO777K
本试题收录于:
雅思阅读题库雅思(IELTS)分类
0
雅思阅读
雅思(IELTS)
相关试题推荐
WhichofthefollowingintegersdoesNOThaveafactorgreaterthan1thatisthesquareofaninteger?
CENSORSHIP:INFORMATION::
BeforeGibson,populardiscoursesurroundingtheInformationAgeoftendepictedthecurrenteraasoneinwhichadvancedtec
A、AdescriptionofareplicableexperimentB、AsummaryreportofnewfindingsC、Arecommendationforpursuinganewareaofrese
A、largelyirrelevant,inthatithaspaidtoomuchattentiontowritersoffemalestereotypesinsteadofthosewhohavechalleng
Thedistinctionbetweenmakingartandthinkingandwritingaboutitshouldimplyneitheramutualexclusivenessnorahi
Thedistinctionbetweenmakingartandthinkingandwritingaboutitshouldimplyneitheramutualexclusivenessnorahi
ReadingtheepicknowntousastheIliadisvastlydifferentfromthe______experienceofhearingandseeingitperformed,fori
Amongcontemporarywritersoffiction,VirginiaWoolfis______figure,insomewaysasradicalasJamesJoyce,inothersnomor
Directions:Eachofthefollowingreadingcomprehensionquestionsisbasedonthecontentofthefollowingpassage.Readthepas
随机试题
A、TheywanttochangethewayEnglishistaught.B、TheylearnEnglishtofindwell-paidjobs.C、Theywanttohaveanup-to-date
《中国药典》规定,儿科及外用散剂的粒度大小,通过七号筛(中药通过六号筛)的粉末总量不得少于()。
正常小儿能用简单的语言表达自己需要的年(月)龄是
当法医对王某进行身体检查时,王某表示拒绝,请问此时侦查机关可否对其采取强制检查?二审法院可以通过哪种方式审理本案?
工程监理费是指监理单位在工程建设监理活动中所需要的()。
M税务师事务所接受W企业委托,代理其全面涉税业务,M所应当对业务工作底稿包含的信息予以保密。下列情形中不构成M所违反保密义务的有()。
甲餐具生产厂为增值税一般纳税人,主要从事一次性餐具的生产和销售业务,2015年8月有关经济业务如下:(1)收购原木,开具的农产品收购发票注明买价33900元,运输途中发生合理损耗452元。(2)采取预收款方式向乙公司销售一次性餐具。8
下列关于死缓犯限制减刑的表述,正确的是()。
1.建立一个表单文件myform,将employee表添加到表单的数据环境中,然后在表单中添加表格控件grid1,指定其记录源类型为“别名”、记录源为employee表文件,最后添加一个“退出”命令按钮控件command1,程序运行时单击该命令按钮将关闭表
Whichofthefollowingisnotmentionedasbeingupforbidattheauction?Thephrase"first-come,first-served"tellsyoutha
最新回复
(
0
)