首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Do music lessons really make children smarter? A) A recent analysis found that most research mischaracterizes the relationsh
Do music lessons really make children smarter? A) A recent analysis found that most research mischaracterizes the relationsh
admin
2022-03-24
100
问题
Do music lessons really make children smarter?
A) A recent analysis found that most research mischaracterizes the relationship between music and skills enhancement.
B) In 2004, a paper appeared in the journal Psychological Science, titled "Music Lessons Enhance IQ." The author, composer and psychologist Glenn Schellenberg, had conducted an experiment with 144 children randomly assigned to four groups: one learned the keyboard for a year, one took singing lessons, one joined an acting class, and a control group had no extracurricular training. The IQ of the children in the two musical groups rose by an average of seven points in the course of a year; those in the other two groups gained an average of 4.3 points.
C) Schellenberg had long been skeptical of the science supporting claims that music education enhances children’s abstract reasoning, math, or language skills. If children who play the piano are smarter, he says, it doesn’t necessarily mean they are smarter because they play the piano. It could be that the youngsters who play the piano also happen to be more ambitious or better at focusing on a task. Correlation, after all, does not prove causation.
D) The 2004 paper was specifically designed to address those concerns. And as a passionate musician, Schellenberg was delighted when he turned up credible evidence that music has transfer effects on general intelligence. But nearly a decade later, in 2013, the Education Endowment Foundation funded a bigger study with more than 900 students. That study failed to confirm Schellenberg’s findings, producing no evidence that music lessons improved math and literacy skills.
E) Schellenberg took that news in stride while continuing to cast a skeptical eye on the research in his field. Recently, he decided to formally investigate just how often his fellow researchers in psychology and neuroscience make what he believes are erroneous—or at least premature—causal connections between music and intelligence. His results, published in May, suggest that many of his peers do just that.
F) For his recent study, Schellenberg asked two research assistants to look for correlational studies on the effects of music education. They found a total of 114 papers published since 2000. To assess whether the authors claimed any causation, researchers then looked for telltale verbs in each paper’s title and abstract, verbs like "enhance," "promote," "facilitate," and "strengthen." The papers were categorized as neuroscience if the study employed a brain imaging method like magnetic resonance, or if the study appeared in a journal that had "brain," "neuroscience," or a related term in its title. Otherwise the papers were categorized as psychology. Schellenberg didn’t tell his assistants what exactly he was trying to prove.
G) After computing their assessments, Schellenberg concluded that the majority of the articles erroneously claimed that music training had a causal effect. The overselling, he also found, was more prevalent among neuroscience studies, three quarters of which mischaracterized a mere association between music training and skills enhancement as a cause-and-effect relationship. This may come as a surprise to some. Psychologists have been battling charges that they don’t do "real" science for some time—in large part because many findings from classic experiments have proved unreproducible. Neuroscientists, on the other hand, armed with brain scans and EEGs (脑电图), have not been subject to the same degree of critique.
H) To argue for a cause-and-effect relationship, scientists must attempt to explain why and how a connection could occur. When it comes to transfer effects of music, scientists frequently point to brain plasticity—the fact that the brain changes according to how we use it. When a child learns to play the violin, for example, several studies have shown that the brain region responsible for the fine motor skills of the left hand’s fingers is likely to grow. And many experiments have shown that musical training improves certain hearing capabilities, like filtering voices from background noise or distinguishing the difference between the consonants (辅音) ’b’ and ’g’.
I) But Schellenberg remains highly critical of how the concept of plasticity has been applied in his field. "Plasticity has become an industry of its own," he wrote in his May paper. Practice does change the brain, he allows, but what is questionable is the assertion that these changes affect other brain regions, such as those responsible for spatial reasoning or math problems.
J) Neuropsychologist Lutz Jancke agrees. "Most of these studies don’t allow for causal inferences," he said. For over two decades, Jancke has researched the effects of music lessons, and like Schellenberg, he believes that the only way to truly understand their effects is to run longitudinal studies. In such studies, researchers would need to follow groups of children with and without music lessons over a long period of time—even if the assignments are not completely random. Then they could compare outcomes for each group.
K) Some researchers are starting to do just that. The neuroscientist Peter Schneider from Heidelberg University in Germany, for example, has been following a group of children for ten years now. Some of them were handed musical instruments and given lessons through a school-based program in the Ruhr region of Germany called Jedem Kind ein Instrument, or "an instrument for every child," which was carried out with government funding. Among these children, Schneider has found that those who were enthusiastic about music and who practiced voluntarily showed improvements in hearing ability, as well as in more general competencies, such as the ability to concentrate.
L) To establish whether effects such as improved concentration are caused by music participation itself, and not by investing time in an extracurricular activity of any kind, Assal Habibi, a psychology professor at the University of Southern California, is conducting a five-year longitudinal study with children from low-income communities in Los Angeles. The youngsters fall into three groups: those who take after-school music, those who do after-school sports, and those with no structured after-school program at all. After two years, Habibi and her colleagues reported seeing structural changes in the brains of the musically trained children, both locally and in the pathways connecting different parts of the brain.
M)That may seem compelling, but Habibi’s children were not selected randomly. Did the children who were drawn to music perhaps have something in them from the start that made them different but eluded the brain scanners? "As somebody who started taking piano lessons at the age of five and got up every morning at seven to practice, that experience changed me and made me part of who I am today," Schellenberg said. "The question is whether those kinds of experiences do so systematically across individuals and create exactly the same changes. And I think that is that huge leap of faith."
N) Did he have a hidden talent that others didn’t have? Or more endurance than his peers? Music researchers tend, like Schellenberg, to be musicians themselves, and as he noted in his recent paper, "the idea of positive cognitive and neural side effects from music training (and other pleasurable activities) is inherently appealing." He also admits that if he had children of his own, he would encourage them to take music lessons and go to university. "I would think that it makes them better people, more critical, just wiser in general," he said.
O) But those convictions should be checked at the entrance to the lab, he added. Otherwise, the work becomes religion or faith. "You have to let go of your faith if you want to be a scientist."
Lots of experiments have demonstrated that people with music training can better differentiate certain sounds.
选项
答案
H
解析
注意抓住题干中的关键信息people with music training can better differentiate certain sounds。原文中提到接受过音乐训练的人对声音的辨别出现在H段。该段最后一句指出,还有许多实验表明,音乐训练可以提高某些听觉功能,比如从背景噪音中过滤出人声,或辨别辅音b和g之间的区别。题干是对原文此处内容的概括总结,其中的have demonstrated对应原文中的have shown;people with music training can better differentiate certain sounds是对原文musical training improves…the consonants ‘b’ and ‘g’的概括。
转载请注明原文地址:https://kaotiyun.com/show/Myx7777K
0
大学英语六级
相关试题推荐
UsingdatafromaresearchstudythattookplaceintheU.K.whichaskedfamiliestoreportontheirdiets,theteamfoundthat
UsingdatafromaresearchstudythattookplaceintheU.K.whichaskedfamiliestoreportontheirdiets,theteamfoundthat
Itmaycomeasasurprisetomanyanexhaustedmotherorfather—butthinkingaboutyourchildrencouldimproveyourmemory,ast
ItstartedwithanitchafterastrollonaCaribbeanbeach,butinjustafewdaysithaddevelopedintoacompletetravel【C1】_
A、Itstillcanbeused.B、Itwillbreakdown.C、Itshouldbethrownaway.D、Itwillbecomebent.A
A、Therearenotenougheconomicopportunitiesforstudentsnotgoingtocollege.B、Schoolsfailtoeducatestudentsproperly.C、
A、Collegegraduateshavedifficultyinfindingjobs.B、Peopleoverlookthecorrelationbetweeneducationandincome.C、Thenumbe
Forthispart,youareallowed30minutestowriteanessaycommentingonthesaying"Theidealisthesunoflife."Youcan
A、Itspowerbillreaches£9millionayear.B、Itsellsthousandsoflightbulbsaday.C、Itsuppliespowertoanearbytown.D、I
A、Therearemorenewtypesofwriters.B、Newtopicshavebeendevelopednowadays.C、Itistoldwithdifferentwordsanduniquev
随机试题
20世纪20年代末,德国哪一心理学家在拉绳实验中,比较了个人绩效和群体绩效?()
李清照是北宋第一个专力填词的作家,也是第一位大量创作慢词的作家。()
以下哪些属于管理过程应遵循的14条原则的内容()
经颅频谱多普勒超声(TCD)常规探测大脑动脉血流信号,下列哪项为血流背离探头(负向流速曲线):①椎-基底动脉;②大脑中动脉;③大脑前动脉;④大脑后动脉
出生后两周龄幼犬体内蛔虫的感染途径是()。
关于建设项目场地准备及临时设施费的说法,正确的有()。
E公司是一家中小企业,成立的时间不长。在成立初期,为了在市场上取得较好的成绩,主要投资人以一个较高的起点设立了这家企业,花巨资购买了世界最先进的一条生产线,并通过给予优厚的待遇招聘到了一些资深的研发人员,为他们配备了很好的设备和环境,期望能够在最短的时间内
A公司拟投资一个新产品,有关资料如下:(1)预计该项目需固定资产投资1500万元,可以持续五年,预计每年付现的固定成本为80万元,变动成本是每件360元。固定资产折旧采用直线法,折旧年限为5年,估计净残值为100万元(与税法估计一致)。预计各年销售量为8
王某是销售部的一位员工,他四季度的业务完成量是20万元,而他的同事张某为16万元,这种分析工作绩效的方法是()。
实现程序可将磁盘中的一个文件复制到另一个文件中,两个文件的文件名在可执行命令的命令行中(相当于copy命令),假定文件在当前目录下。请填空。#includevoidmain(intargc,char*argv[]){FI
最新回复
(
0
)