首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—证
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—证
admin
2017-01-21
74
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—
证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=∫
x0
a
f(x)dx
0
令φ(x)=—x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 x
0
f(x
0
)=[*] (Ⅱ)令F(x)=xf(x)一∫
x
1
f(t)dt, 且由f’(x)>[*] 有 F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(Ⅰ)中的点是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/N1H4777K
0
考研数学三
相关试题推荐
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ﹢(a)>0,证明:存在ε∈(a,b),使得f〞(a)<0.
D是正方形区域,因在D上被积函数分块表示为[*]
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为____________.
在区间(0,1)中随机地取两个数,则两数之差的绝对值小于1/2的概率为___________.
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设函数f(x)=x/(a+ebx)在(-∞,+∞)内连续,且,则常数a,b满足
设函数z=f(xy,yg(x)),函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
随机试题
二氧化碳灭火剂的主要优点是()。
结合桑螵蛸药性,试用中医药理论阐述桑螵蛸的功效与主治病证。
培养哪种微生物的分离培养基中需要加入青霉素
血清蛋白电泳时通常用pH8.6缓冲液,此时各种蛋白质带有的电荷为
甲委托乙购书,并将一本存在3万元人民币的全国通兑活期存折交给乙用于买书。乙在途中取出该存折的3000元用于购买毒品,被公安机关当场抓获。审讯中,乙供述存折中余下的1万元仍打算用于购买毒品。县法院对乙判处有期徒刑15年。随后,公安机关作出行政处罚决定,关于当
当桥梁基桩桩孔较深且倾斜度较大时,可用于检测钻孔倾斜度的设备有()。
专项规划是指导该领域的发展以及审批核准该领域重大项目和安排重大投资的()。
根据《证券法》的规定,某上市公司的下列人员中,不得将其持有的该公司的股票在买入后6个月内卖出,或者在卖出后6个月内又买人的有()。
心理健康教育属于我国学校德育范畴。()
耦合和内聚是评价模块独立性的两个主要标准,其中【】反映了模块内各成分之间的联系。
最新回复
(
0
)