首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—证
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—证
admin
2017-01-21
51
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—
证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=∫
x0
a
f(x)dx
0
令φ(x)=—x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 x
0
f(x
0
)=[*] (Ⅱ)令F(x)=xf(x)一∫
x
1
f(t)dt, 且由f’(x)>[*] 有 F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(Ⅰ)中的点是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/N1H4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
[*]
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=O的通解为________.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设随机变量X服从参数为λ的指数分布,则
求幂级数xn/n的收敛区间,并讨论该区间端点处的收敛性.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×x中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,...,xn)=Aij/丨A丨xixj.记X=(x1,x2,...,xn)T,把f(x1,x2,...,xn)写成
设函数f(x)=x/(a+ebx)在(-∞,+∞)内连续,且,则常数a,b满足
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
随机试题
痛经、经闭,水瘀互阻之水肿,最宜选用
根据《水利工程设计概估算编制规定(工程部分)》(水总[2014]429号),水闸夜间施工增加费属于()。
设计单位推荐材料、设备时应遵循()的原则。
某市政公司承包某路段的改建工程,全长2.5km,工期为当年7月至次年2月。该路段为4快2慢主干道,道路结构层:机动车道为20cm石灰土底基层,45cm二灰碎石基层,9cm粗、4cm细沥青混凝土面层;非机动车道为20cm石灰土底基层,30cm二灰碎石基层,6
会员单位在开户时,应当向投资者充分揭示股指期货风险,全面客观介绍股指期货法律法规、业务规则租产品特征。()
下列说法中错误的是()。
怎样理解“在广泛的文化情境中认识美术”?
根据《中华人民共和国教育法》的规定,中等及中等以下教育在国务院领导下,由()管理。
以名例律作为总则的封建成文法典有()。
下列程序的执行结果是 publicclassTestcc{ publicstaticvoidmain(Stringargs[]) {System.out.println(25f%4.0f); } }
最新回复
(
0
)