首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=(x一x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=xn时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
设函数f(x)=(x一x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=xn时连续. (1)证明f(x)在点x=x0处可导; (2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
admin
2016-12-16
47
问题
设函数f(x)=(x一x
0
)
n
φ(x)(n为任意自然数),其中函数φ(x)当x=x
n
时连续.
(1)证明f(x)在点x=x
0
处可导;
(2)若φ(x)≠0,问函数f(x)在x=x
0
处有无极值,为什么?
选项
答案
(1)由于 [*] 即f(x)在x=x
0
处可导,且f’(x
0
)=0. (2)由于φ(x)在x=x
0
处连续,且φ(x
0
)≠0,所以φ(x)在点x
0
的充分小的邻域(x
0
一δ, x
0
+δ)内与φ(x
0
)同号,于是f(x)的符号只与n的奇偶性有关. ①若n为奇数,则经过x
0
时,f(x)的值变号,所以在x=x
0
处没有极值; ②若n为偶数,则(x一x
0
)
n
>0(x≠x
0
). 当φ(x
0
)>0,且0<|x一x
0
|<a时,f(x)=(x—x
0
)
n
φ(x)>0=f(x
0
),所以在x=x
0
处有极小值f(x
0
). 当φ(x
0
)<0,且0<|x一x
0
|<δ时,f(x)=(x一x
0
)
n
φ(x)<0=f(x
0
),所以在x=x
0
处有极大值f(x
0
).
解析
用导数定义证明(1);用极值的定义求解(2).
转载请注明原文地址:https://kaotiyun.com/show/N6H4777K
0
考研数学三
相关试题推荐
计算,其中L是:(1)抛物线y2=x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)从点(1,1)到点(1,2)再到点(4,2)的折线;(4)曲线x=2t2+t+1,y=t2+1上从点(1,1)到点(4,2
求下列函数的一阶偏导数:
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
求曲线y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积5,并求该平面图形绕),轴旋转一周所得旋转体的体积V.
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
计算不定积分
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
求微分方程y〞ˊ-yˊ=0的一条积分曲线,使此积分曲线在原点处有拐点,且以直线y=2x为切线.
对于第二类曲面积分,写出类似于公式(10)那样的计算公式,其中定向光滑曲面∑的方程为:(1)y=y(z,x),(z,x)∈Dzx;(2)x=x(y,x),(y,z)∈Dyz.
利用三重积分计算下列立体Ω的体积:(1)Ω={(x,y,z)|,a>0,b>0,c>0};(2)Ω={(x,y,z)|x2+z2≤1,|x|+|y|≤1};(3)Ω={(x,y,z)|x2+y2+z2≤1,0≤y≤ax,a>0}.
随机试题
A、环甲膜穿刺术B、气管切开术C、两者均可D、两者均不可口咽部肿胀病人的阻塞性窒息采用
房地产经纪人享有,而房地产经纪人协理不享有的权利有:()。
窗式空调器应安装在无阳光直接照射之处,空调器的后部与其他障碍物必须有( )的距离。
下列国际收支项目中,属于国际收支平衡表金融账户的是()。
属于淮河流域的河流是()。
一分为二地看幸福才能一分为二地看中国,一分为二地看中国才能既正视缺憾不___________,也才能淡看成就不___________。我们希望并且相信,立足于全体国民对于幸福认识的理性化以及对于幸福追求的自主化,幸福终能成为每一位中国人归依的家园。依次填入
高血压的并发症下列哪项较少见
下列哪些不属于全国人民代表大会常务委员会的职权?()
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
最新回复
(
0
)