设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求矩阵A的全部特征值;求|A*+2E|.

admin2022-11-08  127

问题 设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ12-2ξ3,Aξ3=2ξ1-2ξ23.求矩阵A的全部特征值;求|A*+2E|.

选项

答案[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/NXgD777K
0

最新回复(0)