首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
admin
2016-09-13
40
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得
fˊ(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为fˊ(x)在[0,1]上连续,所以,fˊ(x)在[0,1]上有最小值和最大值,设为m,M,即有x
1
,x
2
∈[0,1],使fˊ(x
1
)=m,fˊ(x
2
)=M. 由中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=fˊ(η)x,于是有 fˊ(x
1
)x=mx≤f(x)=f(x)-f(0)=fˊ(η)x≤Mx=fˊ(x
2
)x, 积分得 fˊ(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤fˊ(x
2
)∫
0
1
xdx, 即[*]fˊ(x
1
)≤∫
0
1
f(x)dx≤[*]fˊ(x
2
),故fˊ(x
1
)≤2∫
0
1
f(x)dx≤fˊ(x
2
). 因为fˊ(x)在[0,1]上连续,由介值定理,必有ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使fˊ(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/PRT4777K
0
考研数学三
相关试题推荐
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
一个班共有30名同学,其中有6名女生,假设他们到校先后次序的所有模式都有同样的可能性.求班上李明和王菲两位同学中,李明比王菲先到校的概率
将函数分别展开成正弦级数和余弦级数.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求出曲面z=xy上的点,使这点处的法线垂直于平面x+3y+z+9=0,并写出这法线的方程.
已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
选用适当的坐标计算下列积分:
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
随机试题
分析者观察和比较相同项目增减变动的金额及幅度,把握企业资产、负债和所有者权益变动趋势的方法包括
盘庚之迁,胥怨者民也,非特朝廷士大夫而已。
A.引起急性感染性心内膜炎最常见的微生物B.引起亚急性感染性心内膜炎最常见的微生物C.引起病毒性心肌炎最常见的微生物D.引起肝炎最常见的微生物E.引起溃疡性结肠炎最常见的微生物柯萨奇病毒
A、糖酵解B、糖的有氧氧化C、2,3-二磷酸甘油酸支路D、三羧酸循环E、糖异生作用成熟红细胞的主要能量来源是
A.皮质醇B.泌乳素C.肾上腺素D.血管加压素E.促甲状腺激素释放激素神经垂体储存的激素是
某小型企业建筑,共4层,总建筑面积约6000m2,楼内设有室内外消火栓系统、自动喷水灭火系统、防排烟系统、火灾自动报警系统、灭火器、消防应急照明和疏散指示标志等消防设施及器材。该建筑消防应急照明和疏散指示系统采用自带电源集中控制型,企业定期对消防
根据《大型群众性活动安全管理条例》(中华人民共和国国务院令第505号)规定,大型群众性活动消防安全责任应由()负责。
=().
关于军队建设的基本内容,下列叙述正确的有()。
死亡宣告被撤销后,对被宣告死亡人的婚姻关系应作如下处理:()。
最新回复
(
0
)