首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得 fˊ(ξ)=2∫01f(x)dx.
admin
2016-09-13
50
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得
fˊ(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为fˊ(x)在[0,1]上连续,所以,fˊ(x)在[0,1]上有最小值和最大值,设为m,M,即有x
1
,x
2
∈[0,1],使fˊ(x
1
)=m,fˊ(x
2
)=M. 由中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=fˊ(η)x,于是有 fˊ(x
1
)x=mx≤f(x)=f(x)-f(0)=fˊ(η)x≤Mx=fˊ(x
2
)x, 积分得 fˊ(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤fˊ(x
2
)∫
0
1
xdx, 即[*]fˊ(x
1
)≤∫
0
1
f(x)dx≤[*]fˊ(x
2
),故fˊ(x
1
)≤2∫
0
1
f(x)dx≤fˊ(x
2
). 因为fˊ(x)在[0,1]上连续,由介值定理,必有ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使fˊ(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/PRT4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 D
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
设P(A)=0或1,证明A与其他任何事件B相互独立.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设f(x)满足,当x→0时,Incosx2是比xnf(x)高阶的无穷小量,而xnf(x)是比esin2x一1高阶的无穷小,则正整数n等于().
设判断f(x)在(一∞,1]是否有界,并说明理由.
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)