首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2012-02-21
122
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:
对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
要证f’(ξ)-λ[f(ξ)-ξ]=1,即要证[f’(ξ)-1]-λ[f(ξ)-ξ]=0,记φ(x)=f(x)-x,也就是要证φ’(f)-λφ(ξ)=0. 构造辅助函数F(x)=e
-λx
φ(x)=e
-λx
[f(x)-x],不难发现F(x)在[0,η]上满足尔尔定理的全部条件,故存在ξ∈(0,η),使F’(ξ)=0,即e
-λx
[φ’(ξ)-λφ(ξ)]=0,而e
-λx
≠0,从而有φ’(ξ)-λφ(ξ)=0,即f’(ξ)-λ[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/PVF4777K
0
考研数学三
相关试题推荐
下列选项中,关系当前我国发展全局的战略抉择是()
近年来,随着比特币、ICO等话题的火爆,区块链这一概念开始走进人们的视野,中外科技公司也纷纷“拥抱”区块链。虽然一些打着区块链旗号的“炒币”事件给这一新技术带来一些负面影响,也引起了各国政府的重视和监管,但专家们普遍认为区块链技术有望成为继互联网、人工智能
从1918年夏到1921年春,列宁领导的苏维埃政权实行了战时共产主义政策。这一政策的主要特征和内容是()
新华社北京5月23日电,日前,国务院总理李克强主持召开国务院常务会议,进一步部署稳经济一揽子措施,努力推动经济回归正常轨道、确保运行在合理区间。会议决定实施6方面措施,分别是:财政及相关政策、金融政策、()、促消费和有效投资、保能源安全
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
差分方程yt+1-yt=t2t的通解为_________.
随机试题
A.3~5周B.1周C.10天D.3周E.6周产后胎盘附着处子宫内膜全部修复为产后()
统计学是以客观现象的数量特征和()为其研究对象的。
下列选项中,不属于瓦格纳的税收“四项九端”原则的是()。
实施教师资格制度有利于提高教师队伍素质,促进教师职业向专业化方向发展。()
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(I)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)收敛;(Ⅲ).
下列关于集合的并运算的说法不正确的是
请根据以下各小题的要求设计VisualBasic应用程序(包括界面和代码)。(1)在名称为Form1的窗体上画1个名称为Label1的标签数组,含3个标签控件,下标从0开始,标签上的内容(按下标顺序)分别是:“等级考试”,“程序设计”,“VB程
A、Thereare32piecesinachessset.B、Chessisplayedbytwopersons.C、Knightscanjumpoverenemy’spieces.D、Theobjectof
人类在历史上的生活正如旅行一样。旅途上的征人所经过的地方,有时是坦荡平原,有时是崎岖险路。志于旅途的人,走到平坦的地方,应是高高兴兴地向前走,走到崎岖的境界,愈是奇趣横生,觉得在此奇绝壮绝的境界,愈能感到一种冒险的美趣。中华民族现在所逢的史路,是一段崎岖险
Weseealotofadvertisementsalmosteverydayandeverywhere.Someadvertisementsaregood,butsomearenotsogood.Writeac
最新回复
(
0
)