首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
admin
2016-11-03
37
问题
将函数f(x)=ln(x+
)展成x的幂级数并求f
(2n+1)
(0).
选项
答案
f′(x)=[*],利用展开式 (1+x)
α
=1+ax+[*]x
n
+… 得到 [*] 再在上式两边积分得到 [*] 级数的收敛区间为(一1,1).但当x=±1时,等式右边的级数为 [*] 为交错级数,满足莱布尼茨准则,是收敛的,故级数的收敛域为[一1,1],即 [*]① 其中x∈[一1,1]. 再求f
(2n+1)
(0).由于f(x)麦克劳林展开式为 [*] 另一方面,由式①得到 f
(2n+1)
(0)=0(n=0,1,2,…),f′(0)=1. [*] =(一1)
n
[*] 故 f
2n+1
(0)=(一1)
n
[1.3.5.….(2n一1)]
2
,n=1,2,3,….
解析
将函数f(x)在点x
0
处展成幂级数,若用直接展开法需求出f
(n)
(x
0
),这是比较困难的.若用间接展开法,可避开求f(x)的n阶导数.本例用间接展开法,为此先求f(x)的导数,将其导数展成x的幂级数后再积分即得函数的幂级数的展开式.设函数f(x)的展开式求出为
f(x)=
a
n
(x—x
0
)
n
.
另一方面,函数f(x)的展开式为
f(x)=
(x—x
0
)
n
.
比较它们的同次幂系数,由展开式的唯一性,有
=a
n
, 即 f
(n)
(x
0
)=a
n
.n!(n=0,1,2,…).
这是求函数在一点处的高阶导数值的有效方法.
转载请注明原文地址:https://kaotiyun.com/show/PXu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
A、 B、 C、 D、 A
A、 B、 C、 D、 B
求下列函数的导数:
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
(1999年试题,八)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,p(x,y,z)为点0(0,0,0)到平面π的距离,求
微分方程y"-y’=ex+1的一个特解具有的形式为()。
随机试题
简述判断种群分布型的方法。
照片上相邻组织影像界线的清楚明了程度称
乙酰半胱氨酸(痰易净)的祛痰作用机制是
16个月婴儿,在7个多月只喂玉米粉,最后3个月体重不增。间断腹泻10余天才来就诊。入院时全身皮肤干燥,两眼都出现结膜干燥斑,角膜正常。预防此类疾病的发生,在膳食中可补充的食物是
毒蛇咬伤后局部症状不显著,疼痛较轻或没有疼痛,仅感局部麻木或蚁行感,伤口出血很少或不出血,周围不红肿,属何种蛇毒()
大咯血是指一日咯血量
有机硫类农药中毒的解救方法有()。
根据下表数据,影响焊接质量总体水平的主要是()。
国务院和地方各级人民政府用于实施义务教育财政拨款的增长比例应当()财政经常性收入的增长比例。
甲、乙、丙、丁拟共同组建一有限责任性质的饮料公司,注册资本200万元,其中甲、乙各以货币60万元出资;丙以实物出资,经评估作价70万元;丁以劳务出资,经全体出资人同意作价10万元。饮料公司成立后经营一直不景气,已欠银行贷款100万元不能偿还。经股东会决议,
最新回复
(
0
)