首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
admin
2016-12-16
98
问题
已知三元二次型
f(x
1
,x
2
,x
3
)=X
T
AX,
矩阵A的对角元素之和为3,且AB+B=0,其中
(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;
(2)求出此二次型;
(3)若β=[4,一1,0]
T
,求A
*
β.
选项
答案
(1)令B=[α
1
,α
2
,α
3
],α
i
为B的列向量,显然α
1
,α
2
线性无关,α
3
=α
1
+α
2
,因而r(B)=2,由AB=一B得到 A[α
1
,α
2
,α
3
]=一[α
1
,α
2
,α
3
],即 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα
3
=一α
3
. 因α
1
,α
2
线性无关,故属于特征值一1的有两个线性无关的特征向量,所以λ
1
=λ
2
=一1为二重特征值.又因A的主对角线上的元素之和为λ
1
+λ
2
+λ
3
=3,故另一特征值为λ
3
=5. 设属于λ
3
=5的特征向量为α=[x
1
,x
2
,x
3
]
T
,则 αα
1
T
=0,αα
2
T
=0. [*] 故 α=[1,1,1]
T
. 对α
1
,α
2
进行施密特正交化得到 [*] 再将β
1
,β
2
,β
3
单位化,得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且经正交变换X=QY后,二次型的标准形为 f=一y
1
2
一y
2
2
+5y
3
2
. [*] 故 f=X
T
AX=x
1
2
+x
2
2
+x
3
2
+4x
1
x
2
+4x
2
x
3
+4x
1
x
3
. (3)设 p=k
1
α
1
+k
2
α
2
+k
3
α
3
, 解得 k
1
=3,k
2
=一2,k
3
=1. 因此p=3α
1
一2α
2
+α,而 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα=5a, 故 A
n
β=一A
n
(3α
1
一2α
2
+α)=3A
n
α
1
一2A
n
α
2
+A
n
α =3(一1)
n
α
1
—2(一1)
n
α
2
+5
n
α [*]
解析
先由AB=一B,B=[α
1
,α
2
,α
3
]得到Aα
i
=一α
i
(i=1,2,3),从而求出A的部分特征值及其特征向量,再由主对角元素之和为3即可求出A的全部特征值,再由特征向量正交,求出其余的特征向量,再正交单位化,即可得到正交变换矩阵Q,从而可求出A,将β写成特征向量的线性组合即可求出A
n
β.
转载请注明原文地址:https://kaotiyun.com/show/PnH4777K
0
考研数学三
相关试题推荐
设A与B均为n,阶矩阵,且A与B合同,则().
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明;
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
差分方程3yx+1-2yx=0的通解为_______.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,则丨aE-An丨=___________.
设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_________,b=___________.
假设随机变量X的绝对值不大于1;P{x=-1}=1/8;P{x=1}=1/4;在事件{-1
随机试题
休克的本质是()
新媒介将报刊、广播、电视的不同功能融为一体,使各种媒介间的界限变得不分明,这体现的新媒介特点是
A.P波B.QRS波群C.T波D.P-Q间期E.ST段心电图中代表心室复极化过程的是()
第1~3对鳃弓位于头端,外观明显;第4对鳃弓存在时间很短,出现不久即消失;第5~6对鳃弓很小,不甚明显。
人体内的常量元素是指
[2004年第71题]以下叙述哪条错误?
2015年1月1日至2019年12月31日,甲公司A专利技术相关的交易或事项如下:资料一:2015年1月1日,甲公司经董事会批准开始自行研发A专利技术以生产新产品。2015年1月1日至6月30日为研究阶段,发生材料费500万元、研发人员薪酬300万元、研
线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,
我们都知道,显示器必须配置显卡来控制显示屏幕上字符与图形的输出,下列不属于显卡类型的是
Probablyforaslongastherehavebeensalesforces,managershavesoughtwaystodeterminewhethertheyareeffectiveornot.
最新回复
(
0
)