首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
已知三元二次型 f(x1 ,x2 ,x3)=XTAX, 矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换; (2)求出此二次型; (3)若β=[4,一1,0]T ,求A*β.
admin
2016-12-16
49
问题
已知三元二次型
f(x
1
,x
2
,x
3
)=X
T
AX,
矩阵A的对角元素之和为3,且AB+B=0,其中
(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;
(2)求出此二次型;
(3)若β=[4,一1,0]
T
,求A
*
β.
选项
答案
(1)令B=[α
1
,α
2
,α
3
],α
i
为B的列向量,显然α
1
,α
2
线性无关,α
3
=α
1
+α
2
,因而r(B)=2,由AB=一B得到 A[α
1
,α
2
,α
3
]=一[α
1
,α
2
,α
3
],即 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα
3
=一α
3
. 因α
1
,α
2
线性无关,故属于特征值一1的有两个线性无关的特征向量,所以λ
1
=λ
2
=一1为二重特征值.又因A的主对角线上的元素之和为λ
1
+λ
2
+λ
3
=3,故另一特征值为λ
3
=5. 设属于λ
3
=5的特征向量为α=[x
1
,x
2
,x
3
]
T
,则 αα
1
T
=0,αα
2
T
=0. [*] 故 α=[1,1,1]
T
. 对α
1
,α
2
进行施密特正交化得到 [*] 再将β
1
,β
2
,β
3
单位化,得到 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且经正交变换X=QY后,二次型的标准形为 f=一y
1
2
一y
2
2
+5y
3
2
. [*] 故 f=X
T
AX=x
1
2
+x
2
2
+x
3
2
+4x
1
x
2
+4x
2
x
3
+4x
1
x
3
. (3)设 p=k
1
α
1
+k
2
α
2
+k
3
α
3
, 解得 k
1
=3,k
2
=一2,k
3
=1. 因此p=3α
1
一2α
2
+α,而 Aα
1
=一α
1
,Aα
2
=一α
2
,Aα=5a, 故 A
n
β=一A
n
(3α
1
一2α
2
+α)=3A
n
α
1
一2A
n
α
2
+A
n
α =3(一1)
n
α
1
—2(一1)
n
α
2
+5
n
α [*]
解析
先由AB=一B,B=[α
1
,α
2
,α
3
]得到Aα
i
=一α
i
(i=1,2,3),从而求出A的部分特征值及其特征向量,再由主对角元素之和为3即可求出A的全部特征值,再由特征向量正交,求出其余的特征向量,再正交单位化,即可得到正交变换矩阵Q,从而可求出A,将β写成特征向量的线性组合即可求出A
n
β.
转载请注明原文地址:https://kaotiyun.com/show/PnH4777K
0
考研数学三
相关试题推荐
曲线tan(x+y+π/4)=ey在点(0,0)处的切线疗程为_________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设函数f(x)在(-∞,+∞)内连续,且试证:若f(x)为偶函数,则F(x)也是偶函数;
设f(u)具有二阶连续导数,且
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
设y=sinx,0≤x≤π/2,t为_______时,右图中阴影部分的面积.S1与S2之和S最小.
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
HPLC的流动相为
银汞合金充填发生迟缓性膨胀的原因是()
房室延搁的生理意义是使心室肌不产生完全强直收缩。()
下列不属于设计阶段的进度控制的是()。
钢筋混凝土梁的两端,靠近支座附近出现正“八”字形裂缝,可能的原因是()。
下面有关清算的解释,正确的是
()是最活跃的购买力,对货币流通影响最为强烈,与宏观经济市场供求具有高度的相关性,是中央银行首要调控的对象。
送蔡元振序曾巩古之州从事①,皆自辟士,士择所从,故宾主相得也。如不得其志,去之可也。今之州从事,皆命于朝,非惟守不得择士,士亦不得择所从,宾主岂尽相得哉!如不得其志,耒可以
某16位计算机所使用的指令格式和寻址方式如下图所示,该机有一个20位基址寄存器,16个16位通用寄存器。指令汇编格式中的S(源)、D(目标)都是通用寄存器,M是主存中的一个单元。三种指令的操作码分别是MOV(OP)=(A)H,STA(0P)=(1B)H,L
Thereligionsoftheworldhaveproducedgreatbooks,withgreatlessonstoteach.Ifwefollowed(36)iswritteninthebooks
最新回复
(
0
)