首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: aij=-AijATA=E且|A|=-1.
admin
2015-07-22
56
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式,证明下列结论:
a
ij
=-A
ij
A
T
A=E且|A|=-1.
选项
答案
当a
ij
=一A
ij
时,有A
T
=一A
*
,则A
T
A=一A
*
A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以|A|=[*] 在A
T
A=一|A|E两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一1,由于A
*
A=|A|E=一E,于是,A
T
A=一A
*
A.进一步,由于A可 逆,得A
T
=-A
*
,即a
ij
=一A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/PuU4777K
0
考研数学三
相关试题推荐
习近平总书记2022年3月6日看望了参加全国政协十三届五次会议的农业界、社会福利和社会保障界委员,并参加联组会,听取意见和建议。他强调,实施乡村振兴战略,必须把确保重要农产品特别是()作为首要任务,把提高农业综合生产能力放在更加突出的位
在新的历史条件下,我们党面临着执政、改革开放、()“四大考验”,同时面临着精神懈怠、能力不足、()“四大危险”。
2022年中央一号文件指出,积极挖掘潜力增加耕地,支持将符合条件的()等后备资源适度有序开发为耕地。
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
数学上有一个大家熟知的命题:“三角形的内角和等于一百八十度。”其实,这个在我们看来是真理的命题却是错误的,因为它少了一个前提条件——在平面上。只有在平面上,三角形的内角和才等于一百八十度。如果将限定条件改为在曲面上,这个结论就不成立了。这启示我们
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
随机试题
以下不属于行政诉讼的特有原则的是()
胎期决定着胚胎的分化发育方向。()
沟通的基本要素包括()。
在我国范围内发生的国际工程争议,解决争议适用于()。
安装单位在履行告知后、开始施工前应向规定的检验机构申请()。
(89年)设A为n阶方阵且|A|=0,则【】
Youaregoingtoreadatextaboutlanguage,followedbyalistofexamples,Choosethebestexamplefromthelistforeachnumb
下面与嵌入式处理器复位相关的叙述中,错误的是()。
Histalentformusicremainedlatentuntilhiswifeboughthimaguitar.
Doyoualwaysunderstandthedirectionsonabottleofmedicine?Doyouknowwhatismeantby"Takeonlyasdirected"?Readthe
最新回复
(
0
)