首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: aij=-AijATA=E且|A|=-1.
admin
2015-07-22
35
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式,证明下列结论:
a
ij
=-A
ij
A
T
A=E且|A|=-1.
选项
答案
当a
ij
=一A
ij
时,有A
T
=一A
*
,则A
T
A=一A
*
A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以|A|=[*] 在A
T
A=一|A|E两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一1,由于A
*
A=|A|E=一E,于是,A
T
A=一A
*
A.进一步,由于A可 逆,得A
T
=-A
*
,即a
ij
=一A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/PuU4777K
0
考研数学三
相关试题推荐
()提升我国空间科学国际竞争力;()进入世界第一方阵;()成为科研利器……中国科学院院长侯建国在2022年6月6日举行的“中国这十年”系列主题新闻发布会上说,十年来,中科院科研人员攻坚克难、勇攀高
国家主席习近平2021年12月22日下午在中南海瀛台会见来京述职的香港特别行政区行政长官林郑月娥。习近平指出,实践证明,()符合“一国两制”原则,符合香港实际,为确保“一国两制”行稳致远、确保香港长期繁荣稳定提供了(
据新华社2022年5月19日报道,今年国家继续在部分主产区实行小麦和稻谷最低收购价政策,小麦、早籼稻、中晚籼稻、粳稻最低收购价格水平()。国家粮食和储备局19日发布信息称,夏粮以()为主,约占全年产量1/4,预计旺季
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
设A与B均为n,阶矩阵,且A与B合同,则().
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x.于足分布在区间[0,x]上细棒的质量m是x的函数m=m(x).应怎样确定细棒在点x。处的线密度(对于均匀细棒来说,单位长度细棒的质量叫做这细棒的线密度)?
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
人员配备的工作包括______、培训和考核组织成员。
CT显示宫颈癌向外侵犯的确切根据是
税务行政原则又被称为课税技术原则,即税法的制定和执行应当便于纳税人履行纳税义务。此原则又细分为()。
下列选项中不属于股东权利的有()。
团体包价旅游的服务项目通常包括()。
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
下列设备组中,完全属于外部设备的一组是
Consumersandproducersobviouslymakedecisionsthatmoldtheeconomy,butthereisathirdmajor【1】toconsidertheroleofgov
Flyer2000/aFlyer2000注意题目要求不超过三个词和一个数字,或一个数字,故此处冠词a可填可不填。
最新回复
(
0
)