首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
admin
2016-10-20
76
问题
设A是n阶矩阵,A
2
=A, r(A)=r,证明A能对角化,并求A的相似标准形.
选项
答案
对A按列分块,记A=(α
1
,α
2
,…,α
n
).由r(A)=r,知A中有r个列向量线性无关,不妨设为α
1
,α
2
,…,α
n
,因为A
2
=A,即 A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
),所以 Aα
1
=α
1
=1.α
`
, …, Aα
r
=α
2r
=1.α
r
. 那么λ=1是A的特征值,α
1
,α
2
,…,α
r
是其线性无关的特征向量. 对于齐次线性方程组Ax=0,其基础解系由n-r(A)=n-r个向量组成.因此,0是A的特征值,基础解系是λ=0的特征向量.从而A有n个线性无关的特征向量,A可以对角化(λ=1是r重根,λ=0是,n-r重根),且有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QMT4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
A是n阶矩阵,且A3=0,则().
设矩阵(I)已知A的一个特征值为3,试求y;(Ⅱ)求矩阵P,使(AP)T(AP)为对角矩阵.
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)