首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
设A是n阶矩阵,A2=A, r(A)=r,证明A能对角化,并求A的相似标准形.
admin
2016-10-20
78
问题
设A是n阶矩阵,A
2
=A, r(A)=r,证明A能对角化,并求A的相似标准形.
选项
答案
对A按列分块,记A=(α
1
,α
2
,…,α
n
).由r(A)=r,知A中有r个列向量线性无关,不妨设为α
1
,α
2
,…,α
n
,因为A
2
=A,即 A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
),所以 Aα
1
=α
1
=1.α
`
, …, Aα
r
=α
2r
=1.α
r
. 那么λ=1是A的特征值,α
1
,α
2
,…,α
r
是其线性无关的特征向量. 对于齐次线性方程组Ax=0,其基础解系由n-r(A)=n-r个向量组成.因此,0是A的特征值,基础解系是λ=0的特征向量.从而A有n个线性无关的特征向量,A可以对角化(λ=1是r重根,λ=0是,n-r重根),且有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QMT4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设A与B均为n,阶矩阵,且A与B合同,则().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
随机试题
"Mum,whatdoesitmeanwhensomeonetellsyouthattheyhaveaskeletoninthecloset?"Jessicaasked."Askeletonintheclose
Bornin1830inruralAmherst,Massachusetts,EmilyDickinsonspentherentirelifeinthehouseholdofherparents.Between185
不属于人身保险合同的是()
关于持有待售资产的会计处理,下列说法中正确的有()。
中国采取的小是民主共和国联邦制度,而是民旅区域自治制度。实践证明,这一制度有利于()。
李某在山上劳作,遇到邻村的妇女王某路过,便拿着镰刀欲对王某实施抢劫,不料被王某夺下镰刀,向其头上猛砍一刀,当即将李某杀死。王某的行为属于正当防卫。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
下列法律关系中的法律事实属于法律行为的是()。
小张和小赵从事同样的工作,小张的效率是小赵的1.5倍。某日小张工作几小时后小赵开始工作,小赵工作了1小时之后,小张已完成的工作量正好是小赵的9倍。再过几个小时,小张已完成的工作量正好是小赵的4倍?()
AudienceAwarenessofWritingI.Introduction—audiencereferstoreadersofwrittenmaterials—thecontent,structureandthe
最新回复
(
0
)