设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.

admin2015-07-10  10

问题 设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.

选项

答案因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故 r(2E—A)=1, [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/QkU4777K
0

相关试题推荐
最新回复(0)