首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
admin
2017-11-23
28
问题
设
(Ⅰ)求
(Ⅱ) 求J
1
=∫
L
(x,y)dx+Q(x,y)dy,其中L是椭圆周2x
2
+3y
2
=l,取逆时针方向.
(Ⅲ) 求J
2
=∫
C
(x,y)dx+Q(x,y)dy,其中C是圆周x
2
+y
2
=3
2
,取逆时针方向.
选项
答案
(Ⅰ) [*] (Ⅱ)可考虑用格林公式求J
1
.曲线L: [*] 围成区域记为D
1
.P(x,y),Q(x,y)当(x,y)≠(一l,0)时处处 有连续偏导,(一1,0)∈D
1
,又 [*] 于是在D
1
上可用格林公式得 [*] (Ⅲ)因为 [*] 也考虑用格林公式计算J
2
.因为P,Q在点(一1,0)处没定义, 所以不能在C围成的区域D
2
上直接用格林公式.但可在D
2
中挖掉以(一1,0)为圆心,ε>0充分小为半径的圆所余下的区域中用格林公式见图. [*] 求解如下: 以(一1,0)为圆心ε>0充分小为半径作圆周C
ε
-
(取顺时针方向),C
ε
与C围成的区域记为D
ε
,在D
ε
上用格林公式得 [*] 其中C
ε
+
取逆时针方向. 用“挖洞法”求得(*)式后,可用C
ε
的方程 (x+1)
2
+y
2
=ε
2
简化被积表达式,然后用格林公式得 [*] 其中D
ε
*
是C
ε
+
所围的区域.
解析
转载请注明原文地址:https://kaotiyun.com/show/Qyr4777K
0
考研数学一
相关试题推荐
求f(x,y)=x+xy—x2一y2在闭区域D={(x,y)10≤x≤1,0≤y≤2}上的最大值和最小值.
设f(z),g(y)都是可微函数,则曲线在点(x0,y0,z0)处的法平面方程为_____.
设函数f(x)在x=2的某邻域内可导,且f(x)=ef(x),f(2)=1,计算f(n)(2).
设,证明:(1),并由此计算Ln;(2)
设随机变量(X,Y)的联合密度函数为求P(X>2Y);
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解。求齐次方程组(i)的通解;
随机试题
关于前列腺MRI扫描的叙述,正确的是
甲工厂委托乙公司购买一批货物,乙公司不收取报酬。根据我国《合同法》的有关规定,下列表述哪些是正确的?
从累计现金流量曲线图上可以了解到()。
材料的极限应力为σlim,材料的屈服极限为σS,材料的强度极限为σB,对于塑性材料的极限应力应取()。
砌体的受力特点是()。
下列按主导产业演进顺序排列正确的是:①石化产业②旅游服务业③服装业④信息产业⑤农产品加工业
党的十八大对建设社会主义文化强国作出进一步部署,强调的重点任务有()
培训部会计师魏女士正在准备有关高新技术企业科技政策的培训课件,相关资料存放在Word文档“PPT素材.docx”中。按下列要求帮助魏女士完成PPT课件的整合制作:将演示文稿按下列要求分为6节,分别为每节应用不同的设计主题和幻灯片切换方式。
Childrenhavealotofspecialtalentstooffer.Theirpursuitofnoveltyandwonderisbothacauseandaneffect—agiftofthe
A、Foodisnolongerabasicneedforus,whileitwasforprimitivepeople.B、Weeatawidevarietyoffood.C、Wenolongereat
最新回复
(
0
)