首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0. 运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0. 运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
admin
2022-08-12
33
问题
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.
运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
选项
答案
当a=0时,f(0)=0有f(a+b)=f(b)=f(a)+f(b)。 当a>0时,在[0,a]和[b,a+b]上分别运用拉格朗日中值定理,有 f’(ξ
1
)=[f(a)-f(0)]/(a-0)=f(a)/a,ξ
1
∈(0,a), f’(ξ
2
)=[f(a+b)-f(b)]/(a+b-b)=[f(a+b)-f(b)]/a,ξ
2
∈(b,a+b), 显然,0<ξ
1
<a≤b<ξ
2
<a+b≤c,因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),从而有[f(a+b)-f(b)]/a≤f(a)/a,又a>0,所以有f(a+b)≤f(a)+f(b)。
解析
转载请注明原文地址:https://kaotiyun.com/show/RKtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
《普通高中思想政治课程标准(实验)》前言中指出,思想政治课教学必须贯彻党的十六大精神,以邓小平理论和“三个代表”重要思想为指导,着眼于当代社会发展和高中学生成长的需要,增强思想政治教育的时代感、()和主动性。
随着高铁的发展,我国城市经济带的效应显著增强,包括长三角、珠三角等多个“一小时生活圈”逐渐形成和完善,这将改变人们的生活方式,重新书写我国经济版图。这说明()。
下列两个教学片段选自某初中课堂实录,阅读后回答问题。片段一S1:Haveyoueverbeentoprave?S2:No,Ihaven’t.Haveyou?S1:Yes.It’swonderful.S2:Howlo
初中数学“分式”包括三方面教学内容:分式、分式的运算、分式方程。针对上述内容,请完成下列任务:(1)分析“分数”在分式教学中的作用。(2)设计三道分式方程题。(要求:①分式方程能转化成一元一次方程;②三道分式方程题逻
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.结合实际(如运动、测量等)设计一道一元二次方程的应用题并给出解答.
在曲面x+y+z=2x+2y—4z—3=0上,过点(3,—2,4)的切平面方程是()。
已知矩阵,求曲线y2—x+y=0在矩阵M—1对应的线性变换作用下得到的曲线方程。
若(n∈N*),则在S1,S2,……,S100中,正数的个数是()。
已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l’:x+by=1。(1)求实数a,b的值;(2)若点P(x0,y0)在直线l上,且,求点P的坐标。
随机试题
女性,26岁,以“颜面皮疹、周身水肿6个月”来诊。孕4次,均出现自然流产。平素无明显口干、眼干,无关节肿痛,有双手遇冷变白。入院后检查尿蛋白,血小板4.6×109/L,ANA阳性,抗SSA阳性,RF25U/L。诊断明确后,下述何种治疗不适合
缺牙间隙的近远中距及龈距短的情况下,人工牙不宜选用
在改扩建项目的费用和效益分析中,若改扩建与生产同时进行的项目,其停产或减产造成的损失,应()。
产权出典的,由()纳税。
“5S”管理中清洁的要求是()。
教师无须具备广博的科学文化知识,只要掌握专业内的知识就可以。
【2015.河北沧州】影响迁移的主要因素有()。
连续几天的蹲点,终于有了一点收获,在大桥附近连日出现__________可疑之人,经过__________计划,办案人员最终将犯罪嫌疑人抓获。依次填入横线中最合适的一组是()。
A、 B、 C、 D、 A
WaterPollutionWaterisveryimportanttous./Factoriesandplantsneedwaterforindustrialusesandlargepiecesoffar
最新回复
(
0
)