首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=xTAx=ax12+2x22一x32+8x1x2+2bx1x3+2cx2x3,矩阵A满足AB=O,其中B= (I)用正交变换化二次型f为标准形; (Ⅱ)判断矩阵A与B是否合同.
设二次型f=xTAx=ax12+2x22一x32+8x1x2+2bx1x3+2cx2x3,矩阵A满足AB=O,其中B= (I)用正交变换化二次型f为标准形; (Ⅱ)判断矩阵A与B是否合同.
admin
2020-09-23
38
问题
设二次型f=x
T
Ax=ax
1
2
+2x
2
2
一x
3
2
+8x
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,矩阵A满足AB=O,其中B=
(I)用正交变换化二次型f为标准形;
(Ⅱ)判断矩阵A与B是否合同.
选项
答案
(I)二次型f的矩阵A=[*] 由AB=O,知λ
1
=0是矩阵A的特征值,B的列向量α
1
=(1,0,1)
T
是A的特征值λ
1
=0对应的特征向量,所以Aα
1
=λ
1
α
1
,即 [*] 于是[*]解得a=一1,b=1,c=一4. 由|λE—A|=[*]=λ(λ一6)(λ+6)=0,得矩阵A的特征值为λ
1
=0, λ
2
=6,λ
3
=一6. 当λ
2
=6时,由(6E—A)x=0,得A的特征值λ
2
=6对应的特征向量α
2
=(1,2.一1)
T
; 当λ
3
=一6时,由(一6E—A)x=0,得A的特征值λ
3
=一6对应的特征向量α
3
=(-1.1,1)
T
,将α
1
,α
2
,α
3
单位化,得 [*] 取P=(η
1
,η
2
,η
3
)=[*],则P是正交矩阵,且 P
-1
AP=P
1
AP=A=[*] 令x=Py,则x=Py即为所求正交变换,从而 f=x
T
Ax=y
T
(P
T
AP)y=6y
2
2
一6y
3
2
. 即为二次型f的标准形. (Ⅱ)不合同,因为f=x
T
Ax=6y
2
2
一6y
3
2
,x
T
Bx=x
1
2
+2x
1
x
3
+x
3
2
=(x
1
+x
3
)
2
. 令[*]则x
T
Bx=y
1
2
,x
T
Ax的正、负惯性指数分别为1,1,而x
T
Bx的正惯性指数为1,负惯性指数为0,所以A与B不合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/S0v4777K
0
考研数学一
相关试题推荐
设A为三阶实对称矩阵,,矩阵A有一个二重特征且r(A)=2.用正交变换法化二次型XTAX为标准二次型.
设A=,问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.
设f(x,y)=(x-6)(y+8),求函数f(x,y)在点(x,y)处的最大的方向导数g(x,y),并求g(x,y)在区域D={(x,y)|x2+y2+z2≤25}上的最大值与最小值.
设f(x)在[1,+∞)上有连续的二阶导数,f(1)=0,fˊ(1)=1,且二元函数z=(x2+y2)f(x2+y2)满足,求f(x)在[1,+∞)上的最大值.
设其中ai(i=1,2,3)为实数,则存在可逆阵C,使得CTAC=B,其中C=__________.
设f(x,y,z)在ΩR={(x,y,z)|x2+y2+z2≤R2}连续,又f(0,0,0)≠0,则R→0时,f(x,y,z)dV是R的__________阶无穷小.
A为4阶方阵,R(A)=3,则A*X=0的基础解系所含解向量的个数为________.
设函数f(x)连续,且f(0)≠0,求极限。
若函数f(χ)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f〞(χ)<0,且f(χ)在[0,1]上的最大值为M.求证:(Ⅰ)f(χ)>0(χ∈(0,1));(Ⅱ)自然数n,存在唯一的χn∈(0,1),使得f′
设,若f(x)在x=0处可导且导数不为零,则k为()
随机试题
油田生产单位要定期进行安全检查,基层队每()一次。
依照《行政复议法》的规定,对于行政行为不服的,可以自知道该具体行政行为之日起()内向复议机关提出复议申请。
下列选项中,属于无芽胞厌氧菌感染特征的是
高血压危象药物治疗可首选
中国收货人甲公司从国外购货,取得的提单上载明“凭指示”的字样,承运人为中国乙公司。当甲公司凭正本提单到港口提货时,被乙公司告知货物已不在其手中。后甲公司在中国法院对乙公司提起索赔诉讼。乙公司在下列哪种情形下不可免除交货责任?()
按支出用途分类,我国的财政支出共有()项,主要包括基本建设支出等。
在系统中设置单位信息时,如果企业类型选择了工业模式,则()。
(36)havegreetedQueenElizabethⅡassheappearedoutside(37)inapinksuitandhatonher80thbirthday.And(38)workingg
June15DearSir,Yourshipmentoftwelvethousand"Smart"watcheswasreceivedbyourcompanythismorning.However,wewi
Directions:Forthispart,youareallowed30minutestowriteacompositiononthetopic:DoesHeroismStillWork?Youshouldw
最新回复
(
0
)