首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例: 某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标: ①掌握勾股定理的内容,体会数形结合思想; ②学会运用勾股定理。 为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
案例: 某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标: ①掌握勾股定理的内容,体会数形结合思想; ②学会运用勾股定理。 为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
admin
2022-08-05
50
问题
案例:
某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:
①掌握勾股定理的内容,体会数形结合思想;
②学会运用勾股定理。
为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
【教师甲】
首先,给大家介绍“赵爽弦图”的内容,板书课题,介绍三角形各边的名称。
然后,提问学生勾股定理的相关知识,给出勾股定理的内容:直角三角形两条直角边的平方和等于斜边的平方。
之后,介绍毕达哥拉斯的探索过程,让学生利用“面积法”验证定理内容。
最后,教师给出练习题(在下面的几组边中,找出能构成直角三角形的边长组合:
①3,3,3;
②3,4,5;
③6,4,9;
④6,8,10),
学生练习。
【教师乙】
先介绍毕达哥拉斯在朋友家的趣事(毕迭哥拉斯在朋友家做客时,发现朋友家的地砖图案反映了直角三角形三边中的某种数量关系),之后让学生去看地砖图形,结合毕达哥拉斯的探索过程(面积法:利用三角形三边分别构成不同的正方形,通过三个正方形的面积关系找到直角三角形三边的关系)自主探索三边关系,得出猜想。
然后,课件给出赵爽弦图,结合图形介绍“赵爽弦图”的证明过程,证明猜想。
最后,得出结论:直角三角形两条直角边的平方和等于斜边的平方。
巩固练习,思考讨论:还有没有不同的方法证明勾股定理的内容?
拓展介绍刘徽的证明方法,使学生感受数形结合,以形证数的思想。
问题:
分析甲、乙两位教师教学思路的特点。
选项
答案
教师甲通过对“赵爽弦图”的介绍直接引入勾股定理的内容,之后结合毕达哥拉斯的探索过程,让学生感受定理内容,最后通过练习题进行知识巩固。这种教学方法以直接导入的方式引入新知,紧扣教学目标,直接给出教学目的,从而有效地引起学生的有意注意,使学生直接进入学习状态;通过介绍毕达哥拉斯的探索过程,诱发学生探索新知的兴趣。虽然这种教学方式能使学生迅速定向,使其可以把握整节课的概念和基本轮廓,能提高课堂效率,但是这种方法由于缺乏学生自主探索的过程,不能使学生充分感受数形结合的思想,不能有效地培养学生独立思考的习惯。此外,课程整体氛同有些枯燥,教师与学生的互动较少,这样难以引发学生的学习兴趣,不能很好地引起学生共鸣。 教师乙首先以讲故事的手段介绍毕达哥拉斯的发现和探索过程,运用趣味导入法引入新知,有效地激发学生对于新知的兴趣。然后,教师让学生运用面积法自主探索新知,提出猜想,培养了学生自主学习的能力,使其感受数形结合思想和以形证数的过程。之后,教师通过介绍“赵爽弦图”的证明方法证明猜想,使学生从不同角度体会数形结合思想,发展形象思维。最后,通过对刘徽证明勾股定理方法的拓展介绍,使学生感受不同的割补方法,充分感受以形证数的思想内涵。教师乙的教学方式虽然不能在开篇使学生直接把握课程目的,但是十分贴切三维教学目标,使学生对于勾股定理有深刻的理解,加深学生对于勾股定理知识内容的记忆。但教师乙的教学过程也存存一些不足:没有使学生充分了解勾股定理在实际解题中的运用
解析
转载请注明原文地址:https://kaotiyun.com/show/S4tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
市场经济具有自发性的缺陷,许多不良商家为了自身的经济利益泯灭良心和做人的道德底线,从事违法犯罪活动,给社会带来了不良的影响。面对市场经济调节的自发性缺陷和部分违法分子的行为,社会应该加强公民基本道德规范中的()教育。
下列不属于语言传递的教学方法的是()。
阅读材料,回答下列问题。问题:思想品德课教学为什么要捕捉与利用学生资源?
自然人开始享有荣誉权的时间是()。
法国启蒙思想家孟德斯鸠指出:“不同气候的不同需要产生了不同的生活方式:不同的生活方式产生了不同种类的法律”,这一观点的积极意义在于说明()。
思想品德的课程标准完全改变了以往“识记”“理解”“运用”的阶梯认知目标体系。而是以()目标为首。
若f(x)为(—l,l)内的可导奇函数,则f’(x)()。
设f(x)是R上的函数,则下列叙述正确的是()。
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系。已知点A的极坐标为,直线l的极坐标方程为pcos(θ一)=a,且点A在直线l上。(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(a为参数),试判断直线
(1)P(A)表示事件A发生的概率,证明P(A∪B)=P(A)+P(B)-P(A∩B);(2)若P(A∩B)=P(A)P(B),则称事件A、B独立;若事件A、B、C两两独立,且P(A∩B∩C)=P(A)P(B)P(C),则称事件A、B、C独立。设
随机试题
《华盛顿公约》赋予ICSID的地位是()
仲裁裁决书的正文部分应当写明哪些内容?
税法的解释按照解释权限划分可分为()。
商业银行的整体经营活动的合规是由其众多的从业人员合规构成的,所以个别银行业从业人员违反规定政策的行为不影响商业银行整体的合规。()
建筑安装企业的工程结算收入包括()。
根据票据法律制度的规定,下列有关票据权利时效的表述中,正确的有()。
下列语句中,不能契合孟子“舍生取义”精神的一项是_______。
厨余垃圾有狭义和广义之分。下列选项中不属于狭义的厨余垃圾的是:
Birdwingshaveamuchmorecomplexjobtodothanthewingsofanairplane,forinadditiontosupportingthebirdtheymustac
WhatisaPortCity?Theportcityprovidesafascinatingandrichunderstandingofthemovementofpeopleandgoodsaround
最新回复
(
0
)