首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
admin
2017-10-12
22
问题
设向量组α
1
,α
2
,…,α
m
线性无关,β
1
可由α
1
,α
2
,…,α
m
线性表示,但β
2
不可由α
1
,α
2
,…,α
m
线性表示,则( ).
选项
A、α
1
,α
2
,…,α
m—1
,β
1
线性相关
B、α
1
,α
2
,…,α
m—1
,β
1
,β
2
线性相关
C、α
1
,α
2
,…,α
m
,β
1
+β
2
线性相关
D、α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关
答案
D
解析
(A)不对,因为β
1
可由向量组α
1
,α
2
,…,α
m
线性表示,但不一定能被α
1
,α
2
,…,α
m—1
线性表示,所以α
1
,α
2
,…,α
m—1
,β
1
不一定线性相关;
(B)不对,因为α
1
,α
2
,…,α
m—1
,β
1
不一定线性相关,β
2
不一定可由α
1
,α
2
,…,α
m—1
,β
1
线性表示,所以α
1
,α
2
,…,α
m—1
,β
1
,β
2
不一定线性相关;
(C)不对,因为β
2
不可由α
1
,α
2
,…,α
m
线性表示,而β
1
可由α
1
,α
2
,…,α
m
线性表示,所以β
1
+β
2
不可由α
1
,α
2
,…,α
m
线性表示,于是α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关,选D.
转载请注明原文地址:https://kaotiyun.com/show/SMH4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
下列矩阵中能与对角矩阵相似的是().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
已知当x→0时,(1+ax2)一1与cosx一1是等价无穷小,则常数a=_____.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设随机变量X与Y相互独立同分布,其中P{X=i}=,i=1,2,3令U=max(X,Y),V=min(X,Y).求P{U=V};
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设当x→0时,f(x)=ln(1+x2)一ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
ImmensekeepoutofsharewithforintimebysolongasagainstaccountoninterfereInthelat
简述芦根、夭花粉的功效的异同点。
BPH的描述哪几项不正确
献血登记表上的献血条形码标识和下列哪项可以不一致
与气的生成关系最密切的是
下列不属于水利水电工程施工定额的是()。
下列财务比率的计算公式中,正确的是()。
商业银行在开展放款业务和投资业务时须仔细核实银行利润,利高的资产项目多做,利薄的项目少做,以保证银行资产的收益和市场竞争力,这体现的经营原则是()。
在了解鱼韵尾鳍在游泳中的作用时,如果单凭观察难以得出结论,可采用的方法是()。
3年前张三的年龄是他女儿的17倍,3年后张三的年龄是他女儿的5倍,那么张三的女儿现在:
最新回复
(
0
)