首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k. (1)证明:当k>0时,f(χ)在[a,b]上连续; (2)证明:当k>1时,f(χ)≡常数.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k. (1)证明:当k>0时,f(χ)在[a,b]上连续; (2)证明:当k>1时,f(χ)≡常数.
admin
2017-09-15
46
问题
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|
k
.
(1)证明:当k>0时,f(χ)在[a,b]上连续;
(2)证明:当k>1时,f(χ)≡常数.
选项
答案
(1)对任意的χ∈
0
[a,b],由已知条件得 0≤|f(χ)-f(χ
0
)|≤M |χ-χ
0
|
k
,[*]f(χ)=f(χ
0
), 再由χ
0
的任意性得f(χ)在[a,b]上连续. (2)对任意的χ
0
∈[a,b],因为k>1, 所以0≤[*]<M|χ-χ
0
|
k-1
由夹逼定理得f′(χ
0
)=0,因为χ
0
是任意一点,所以f′(χ)≡0,故f(χ)≡常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Spt4777K
0
考研数学二
相关试题推荐
证明:[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设函数x=f(y)、反函数y=f-1(x)及fˊ(f-1(x)),f〞(f-1(x))都存在,且fˊ(f-1(x))≠0,求证:
求下列各函数的导数(其中,a,b为常数):
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
已知f(x)是微分方程=_______.
设区域D1={(x,y)||x|+|y|≤1},D2={(x,y)|1<|x|+|y|≤2}则[*]
设曲线L位于xOy平面的第一象限内,L上任意_一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
求f(x,y,z)=lnx+2lny+3lnz存球面x2+y2+z2=6r2(r>0)上的最大值,并由此证明:对任意正数a,b,c成立
(2011年试题,二)设平面区域D由直线y=x,圆x2+y2=2y及y轴所组成,则二重积分
随机试题
扩大产品组合策略是指减少产品线和产品项目,拓展经营范围。()
A.鞘膜积液B.隐睾C.精索静脉曲张D.附睾炎透光试验(+)的是
肉芽肿性炎症的主要炎细胞是
A.心肾不足之失眠B.肝血不足之失眠C.气血两虚之失眠D.肝阳上亢之失眠E.肾阴不足之失眠酸枣仁汤适宜治疗()
最高人民法院在2009年7月5日公布的《关于当前形势下做好行政审判工作的若干意见》中要求:“各级人民法院要高度重视行政诉讼立案工作,不得随意限缩行政诉讼受案范围,不得额外增加受理条件。”下列相关的说法中正确的是哪些?()
下列有关大气污染现状监测周期和频次要求说法正确的是()。
根据《建筑安装工程费用项目组成》(建标[2003]206号)文件的规定,下列属于直接工程费中人工费的是生产工人()。
色彩的鲜明饱和程度称为纯度,色彩的冷暖性称为色性。()
M:Oh,hi,whatisyournameagain?Sincethisisonlythe2nddayofschool,Ican’trememberthestudents’namesyet.W:【46】Iha
A种酒精中纯酒精的含量为40%,B种酒精中纯酒精的含量为36%,C种酒精中纯酒精的含量为35%,它们混合后得到纯酒精含量为38.5%的酒精11升。其中B种酒精比C种酒精多3升,那么其中A种酒精有多少升?()
最新回复
(
0
)