首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
admin
2017-10-21
85
问题
α
1
,α
2
,α
3
,β线性无关,而α
1
,α
2
,α
3
,γ线性相关,则
选项
A、α
1
,α
2
,α
3
,β+γ线性相关.
B、α
1
,α
2
,α
3
,cβ+γ线性无关.
C、α
1
,α
2
,α
3
,γ+cγ线性相关.
D、α
1
,α
2
,α
3
,β+cγ线性无关.
答案
D
解析
由于α
1
,α
2
,α
3
,β线性无关,α
1
,α
2
,α
3
是线性无关的.于是根据定理3.2,α
1
,α
2
,α
3
,cβ+γ(或α+cγ)线性相关与否取决于cβ+γ(或β+cγ)可否用α
1
,α
2
,α
3
线性表示.
条件说明β不能由α
1
,α
2
,α
3
线性表示,而γ可用α
1
,α
2
,α
3
线性表示.
cβ+γ可否用α
1
,α
2
,α
3
线性表示取决于c,当c=0时cβ+γ=γ可用α
1
,α
2
,α
3
线性表示;c≠0
时cβ+γ不可用α
1
,α
2
,α
3
线性表示.c不确定,(A),(B)都不能选.
而β+cγ总是不可用α
1
,α
2
,α
3
线性表示的,因此(C)不对,(D)对.
转载请注明原文地址:https://kaotiyun.com/show/TOH4777K
0
考研数学三
相关试题推荐
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
用正交变换法化二次型f(x1+x2+x3)=x12+x22+x32—4x1x2—4x1x3—4x2x3为标准二次型.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设A=有三个线性无关的特征向量,求x,y满足的条件.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设方程组有解,则α1,α2,α3,α4满足的条件是_________.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
下列属于外围护系统现场实验和测试的项目是()。
自发性蛛网膜下腔出血伴一侧动眼神经麻痹提示
男性患者,58岁,上腹疼痛,反酸,内镜检查发现,十二指肠降段、水平段及空肠多发性溃疡,抑酸治疗效果不佳。进一步应做的检查是
我国现行宪法中的哪项规定充分表明了我国的国家性质?()
试论述行政诉讼的受案范围。
位于北京市朝阳区的某高架桥建设项目未按照环境报告书安装隔音设施便已通车,按照《环境保护法》的规定,应对其实施( )的行政处罚。
()为不定期报告,根据董事会、高级管理层或其委员会要求,提交董事会、高级管理层或其委员会审议或审阅。
在对有爆炸发生的事件进行现场评估时,若发现是恐怖袭击事件,接下来的正确处置方法是()。
下列叙述中,错误的是()
Thesetechnologicaladvancesincommunicationhave______thewaypeopledobusiness.
最新回复
(
0
)