首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x—t)dt.求.
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x—t)dt.求.
admin
2017-07-26
48
问题
设f(x)具有连续导数,且满足f(x)=x+∫
0
x
tf’(x—t)dt.求
.
选项
答案
由已知条件f(x)=x+∫
0
x
tf’(x—t)dt可化为 f(x)=x+x∫
0
x
f’(u)du一∫
0
x
uf’(u)du. 两边对x求导得: f’(x)=1+∫
0
x
f’(u)du+xf’(x)一xf’(x) =1+f(x)一f(0) =1+f(x) (f(0)=0). 得f(x)=e
x
一1.所以[*](e
x
一1)=一1.
解析
f(x)的表达式中含有参变量的积分,应经变量替换将参变量移至积分号外或积分限上再求极限.
∫
0
x
f(x—t)dt
∫
0
x
(x一u)f’(u)du
=x∫
0
x
f’(u)一∫
0
x
uf(u)du.
将参变量x提到积分号外后,已知条件可化为:
f(x)=x+x∫
0
x
f’(u)du一∫
0
x
u’f(u)du.
转载请注明原文地址:https://kaotiyun.com/show/TfH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2):1,则f"’(2)=_________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设函数f(x)在区间(-R,R)内可展开成x的幂级数,证明:当f(x)是奇函数时,幂级数中不含x的偶次幂项;当f(x)是偶函数时,幂级数中不含x的奇次幂项.
设f(x)的导数在x=a处连续,又,则().
求幂级数的收敛半径、收敛域及和函数,并求
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设f(x)=slnx,f[φ(x)]=1一x2,则φ(x)=________,定义域为________。
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
随机试题
Inordertolearnaforeignlanguagewell,itisnecessarytoovercomethefearofmakingmistakes.Iftheprimarygoal(目标)of
男性,40岁,发现右颊黏膜白色斑块1个月,临床检查除右颊孤立白色斑块外未发现其他病损。你认为下列哪项提供的信息丕星以作为本病例的发病因素
风险/效益比是
男,42岁,2年前诊断为原发性慢性肾上腺皮质功能减退症。长期口服氢化可的松(30mg/d)替代治疗。近2天发热38℃,咽痛。目前氢化可的松应
A.处方药B.处方药和甲类非处方药C.乙类非处方药D.甲类非处方药E.非处方药根据《处方药与非处方药分类管理办法(试行)》不能在大众媒介上发布广告的药品是
获得()资质的企业,可以承接建设单位按照规定发包的工程。
背景某宿舍楼土建工程,建筑面积为15548m2,全现浇钢筋混凝土结构,地下1层,地上14层。业主要求承包单位按工料单价法中的以直接工程费为计算基础的程序进行计算。计算结果如下:按工程量和工、料、机单价计算,其合价为2274.93万元;各类措施费的合计费率
汪某,女性,60岁,家庭妇女。吸烟40余年,慢支病史20余年,气短5年。体格检查:体温36℃,脉搏96次/分,呼吸20次/分,血压130/85mmHg,桶状胸,双肺叩诊过清音,触觉语颤减弱,肺泡呼吸音减弱。心尖搏动位于左侧第5肋间锁骨中线外1.0cm。实验
“APEC蓝、青奥蓝、春节蓝”,由于雾霾,“蓝”更显可贵。2013年9月,国务院颁布大气污染防治行动计划。一年多来,这个行动计划成为各地各部门防治大气污染的共同行动指南。APEC会议期间,北京、天津、河北、山西、内蒙古、山东、河南等省区
给定资料1.2013年,听到家里的“顶梁柱”遭遇车祸去世的噩耗时,41岁的徐某抱着女儿痛哭不已。尽管法院判决肇事司机赔偿徐某一家22万余元,但被执行人却无可供执行的财产。女儿在念高中,公婆则卧病在床,无论是学杂费还是医药费,对于这个贫困的农村家庭
最新回复
(
0
)