首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2. 判断βαT是否相似于对角矩阵(要说明理由).
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2. 判断βαT是否相似于对角矩阵(要说明理由).
admin
2019-01-25
68
问题
设A是n阶矩阵,n维列向量α和β分别是A和A
T
的特征向量,特征值分别为1和2.
判断βα
T
是否相似于对角矩阵(要说明理由).
选项
答案
βα
T
不相似于对角矩阵,可用反证法说明. 如果对角矩阵相似于βα
T
,则这个对角矩阵的对角线上的元素是βα
T
的特征值,都是0,即是零矩阵.βα
T
相似于零矩阵,也一定是零矩阵.但是α和β分别是A和A
T
的特征向量,都不是零向量,因此βα
T
不是零矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/TlM4777K
0
考研数学一
相关试题推荐
证明:∫0sinnxcosnxdx=2-n∫0sinnxdx.
设.(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
计算(z-y)xdydz+(x-y)dxdy,其中∑为+y2=1位于z=0与z=3之间的部分的外侧.
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为_______.
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.求随机变量X的边缘密度函数;
判断级数的敛散性.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:常数a,b;
设二维随机变量(X,Y)的分布函数为F(x,y),已知X=Y,且都服从标准正态分布.如有F(a,b)=则
求极限
数列{xn}通项
随机试题
行为主义学派认为,人的异常行为,神经症的症状主要是通过什么得来的
A.百日咳B.急性肺水肿C.支气管扩张D.主动脉瘤E.胸膜炎可引起声音嘶哑的咳嗽的是
权益工具投资的公允价值发生严重或非暂时性下跌,表明该项金融资产发生减值。()
北宋建都开封,河南又一次成为全国的政治、经济和文化中心。当时开封人口达100多万,为全国第()大城市。
我国对外政策的基本立足点是()。
爱因斯坦提出的广义相对论认为:由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦认为太阳是一个大引力场,遥远的星光如果掠过太阳表面,将会发生1.7秒的偏转。这一预言最终得到了天文观测的证实。 由此不能推出()。
窗体中有命令按钮run34,对应的事件代码如下:PrivateSubrun34_Enter()DimhumAsInteger,aAsInteger,bAsInteger,iAsIntegerFori
Thetaxidriverwasamaninhislatethirties.Hepickedmeupand【C1】________metomyplace.Iusuallyliketohavebrief【C
InterpersonalRelationshipsInthelast25yearswehavewitnessedanimpressivegrowthinourknowledgeaboutemotionsande
Whatisthenewsitemmainlyabout?
最新回复
(
0
)