首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
admin
2016-09-19
41
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
选项
答案
必要性 A是正交矩阵<=>AA
T
==>|A|=±1. 若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
; 若|A|=-1,则AA
*
=|A|E=-E,A(-A
*
)=E,而已知AA
T
=E,从而有-A
*
=A
T
,即a
ij
=-A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=-1,且a
ij
=-A
ij
时,-A
*
=A
T
,AA
*
=|A|E=-E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/UjT4777K
0
考研数学三
相关试题推荐
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为F(y),求随机变量u=X+Y的概率密度g(u).
随机试题
如图所示,固定容器及可动活塞P都是绝热的,中间有一导热的固定隔板B,B的两边分别盛有气体甲和乙。现将活塞P缓慢地向B移动一段距离,已知气体的温度随其内能的增加而升高,则在移动P的过程中()。
出口口岸()提运单号()
( )发现涉嫌占用、挪用客户保证金等违法违规行为或者可能发生风险的,应当立即向中国证监会派出机构和公司董事会报告。
下列不属于社交基本原则的是()。
一件工作,已知甲、乙合作需4小时完成;乙、丙做需要5小时完成;如甲、丙先合作做2小时,则余下工作乙需6小时。设三人的彼此合作均不影响对方的工作效率,则乙单独做完这件工作要()小时。
聂耳在电影《风云儿女》中创作了两首著名的电影插曲是________和《义勇军进行曲》。
公文处理的基本原则包括()。
彗星自身不发光,只是反射其他光源例如太阳的光。科学家根据彗星的亮度来估计其质量:质量越大,反射的光越多。但是,卫星探测器显示,哈雷彗星每单位质量所反射的光比科学家原先估计的要少60倍。上述断定最能支持以下哪项结论?
Whatdoesthewomanneedtoget?
SomeTheoriesofHistoryI.TheproblemsofunderstandinghistoryHistorywithwrittenrecords:therecordsmaybe【T1】______
最新回复
(
0
)