首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
admin
2016-09-19
39
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
选项
答案
必要性 A是正交矩阵<=>AA
T
==>|A|=±1. 若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
; 若|A|=-1,则AA
*
=|A|E=-E,A(-A
*
)=E,而已知AA
T
=E,从而有-A
*
=A
T
,即a
ij
=-A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=-1,且a
ij
=-A
ij
时,-A
*
=A
T
,AA
*
=|A|E=-E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/UjT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
如果n个事件A1,A2,…,An相互独立,证明:
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
在水平放置的椭圆底柱形容器内储存某种液体,容器的尺寸如图32所示,其中椭圆方程为x2/4+y2=1(单位:m),问(1)当液面在过点(0,y)(-1≤y≤1)处的水平线时,容器内液体的体积是多少m3?(2)当容器内储满了液体后,以0.16m
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设正数列{an}满足,则极限=
随机试题
布雷顿森林体系确定的国际储备货币是_________。
男性,25岁。3天前抬重物扭伤腰部。服用芬必得,卧床休息腰痛无缓解,出现右腿麻木,右直腿抬高40°~50°阳性,加强试验阳性。经检查诊断腰4~5椎间盘突出症,此时较合适的处理是
泻下药的主要功效不包括
碎石沥青混凝土(SAC)的试验技术指标包括()。
甲公司对A产品实行1个月内“包退、包换、包修”的销售政策。2005年1月份销售A产品100件,2月份销售A产品80件,A产品的销售单价均为5000元。根据2004年的经验,A产品包退的占4%、包换的占2%、包修的占6%。假设2005年2月份未出现退、换产
所谓会计监督,指的是会计人员进行()的同时,对特定对象经济业务的合法性、合理性进行审查。
关于儒释道文化的说法,正确的有()。
在关系模型中,若属性A是关系R的主码,则在R的任何元组中,属性A的取值都不允许为空,这种约束称为【】规则。
Ihaveworkedwithhimforsometimeandhavefoundthatheis______thanJohn.
TheancientAztecsveneratedthecacaotreeanduseditsbeansasaformofcurrency.They【C1】______thetreeasasourceofstre
最新回复
(
0
)