首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=0,A的秩r(A)=2. 求A的全部特征值;
设A为3阶实对称矩阵,且满足条件A2+2A=0,A的秩r(A)=2. 求A的全部特征值;
admin
2015-09-14
80
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=0,A的秩r(A)=2.
求A的全部特征值;
选项
答案
设λ为A的一个特征值,对应的特征向量为α,则Aα=λα,α≠0;A
2
α=λ
2
α。 于是(A
2
+2A)α=(λ
2
+2λ)α 由条件A
2
+2A=0,推知(λ
2
+2λ)α=0 又由于α≠0,故有λ
2
+2λ=0 解得λ=一2,λ=0 因为实对称矩阵A必可对角化,且r(A)=2,所以 [*] 因此,矩阵A的全部特征值为λ
1
=λ
2
解析
转载请注明原文地址:https://kaotiyun.com/show/UlU4777K
0
考研数学三
相关试题推荐
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
结合材料回答问题:加强和创新社会治理,非常重要的一点就是推动社会治理重心下移。打赢疫情防控阻击战,更需要将防控工作落实到单位社区、居住社区、小区、院落、居民楼、每一个有人群的空间,直到每一户、每个人。在这次疫情防控中,很多地方都把干部派到社区、小
2020年9月8日,商务部前部长陈德铭在“服务业扩大开放暨企业全球化论坛”上发言表示,经历了抗疫的洗礼和反思,全球价值链会趋向短链化和区域化,推动经济增长的生产力将更多地依靠科技进步,一个数字化、网络化的智能社会将势不可挡。未来,中国将更注重科技人才,加紧
毛泽东说:“从认识过程的秩序说来,感觉经验是第一的东西,我们强调会实践在认识过程中的意义,就在于只有社会实践才能使人的认识开始发生,开始从客观外界得到感觉经验。一个闭目塞听、同客观外界根本绝缘的人,是无所谓认识的。认识开始于经验——这就是认识论的唯物论”
疫情紧急,防疫物资呈现紧张短缺局面。我们呼吁各地医疗物资生产企业要抓紧时间恢复生产,保证物资供应充足。同时,我们也呼吁和鼓励各级政府向积极恢复生产的单位提供一些政策优惠,调动企业的主动性和积极性。疫情当前,需要“市长”,也需要市场。市场和“市长”一起配合,
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
随机试题
—Doyouthinkitisgoingtoraintonight?
系统性硬化病患者的常见自身抗体为
腹部损伤中最常受损的器官是
由于各个企业的业务性质、组织规模和管理上的要求不同,企业应根据自身的特点,选择恰当的账务处理程序。()
某公司拟使用短期借款进行筹资。下列借款条件中,不会导致有效年利率(利息与可用贷款额的比率)高于报价利率(借款合同规定的利率)的是()。
配送中心流程的优化管理可以从以下()环节进行努力。
在“明德慎罚”思想的指导下,西周实行的刑法原则有()。
若某计算机系统是由1000个元器件构成的串联系统,且每个元器件的失效率均为10-7/h,在不考虑其他因素对可靠性的影响时,该计算机系统的平均故障间隔时间为______小时。A.1×104B.5×104C.1×105D.5×105
下列度量单位中,用来度量计算机内存空间大小的是
40yearsagotheideaofdisabledpeopledoingsportwasneverheardof.Butwhentheannualgamesforthedisabledwerestarted
最新回复
(
0
)