首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
admin
2015-07-22
81
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
~S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点g(x,y)处的切线方程为Y—y=y’(X—x).它与x轴的交点为 [*] 由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又S
2
=∫
0
x
y(t)dt,由条件2S
1
一S
2
=1知 [*] 两边对x求导并化简得yy"=(y’)
2
,令p=y’,则上述方程可化为 [*] 从而 [*]=C
1
y,于是y=e
C
1
x+C
2
.注意到y(0)=1,并由①式得y’(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/V0U4777K
0
考研数学三
相关试题推荐
2022年3月11日,国务院总理李克强出席记者会并回答中外记者提问。他指出,今年我们加大宏观政策实施力度,财政货币政策要围绕实现()目标来展开,所以我们强调()优先也是宏观政策,其他政策要配套,为实现(
据新华社2021年10月13日报道,习近平总书记对老龄工作作出重要指示指出,各级党委和政府要高度重视并切实做好老龄工作,贯彻落实积极应对人口老龄化国家战略,把()融人经济社会发展全过程,加大制度创新、政策供给、财政投入力度,健全完善老龄
当前和今后一个时期,我国经济发展面临的问题,供给和需求两侧都有,但矛盾的主要方面在供给侧。比如,我国一些行业和产业产能严重过剩,同时,大量关键装备、核心技术、高端产品还依赖进口;事实证明,我国不是需求不足,或没有需求,而是需求变了,供给的产品却没有变,质量
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
利用格林公式,计算下列第二类曲线积分:
本题考察有趣的雪花曲线.雪花曲线是这样作出来的:以边长为1的等边三角形作为基础,第一步:将每边三等分,以每边的中间一段为底各向外作一个小的等边三角形,随后把这三个小等边三角形的底边删除.第二步:在第一步得出的多边形的每条边上重复第一步,如此无限地继续下去,
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得__________.
随机试题
在焊件接头形式、尺寸及刚性拘束相同条件下,埋弧自动焊产生的变形比焊条电弧焊小。()
可以覆盖相距不远的几栋办公楼,也可以覆盖一个城市的网络是【】
企业文化具有不同的表现形式,其中,企业文化的核心是()
使用涂片法诊断淋病,以下哪种说法不对
某国家机关的司机在上班时间里受该机关的领导指派将某一紧急公文送交另一国家机关,在送交的途中,陔司机因其过失将一行人撞伤,请问该司机的过失行为所导致的法律责任属于下列哪一种?()
在建设工程中运用价值工程时,提高工程价值的途径有( )。
根据下面材料,回答问题。2015年1一4月份,民间固定资产投资为()亿元。
Whatdoesthespeakersuggestthatthestudentsshoulddoduringtheterm?
【B1】【B15】
A、MoresurvivingfamilycanbefoundinSierraLeone.B、Thecenterwillhelpthegrowingnumberoforphans.C、Theorphanscanha
最新回复
(
0
)