首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
admin
2017-09-15
59
问题
设a
1
<a
2
<…<a
n
,且函数f(χ)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
f
(n)
(ξ).
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*] 构造辅助函数φ(χ)=f(χ)-k(χ-a
1
)(χ-a
2
)…(χ-a
n
),显然φ(χ)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=φ′(ξ
n
(1)
)=0,φ′(χ)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(χ)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
n-1
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
n
(χ)=f
(n)
(χ)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Vok4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
求下列各函数的导数(其中f可导):
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
曲线的渐近方程为________.
求f(x)的值域。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设f(x)在x=0的邻域内有定义,f(0)=1,且则f(x)在x=0处().
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设f(x)在x=0的邻域内有定义,f(0)=1,且,则f(x)在x=0处().
(1999年试题,二)记行列式为f(x),则方程f(x)=0的根的个数为().
随机试题
发病一个半小时后的脑出血发病2周后的脑出血
一患儿发热3天后出皮疹,皮疹位于颈部、面部、躯干、四肢、手心、足心,体温不退。该病常见并发症不包括
依照我国刑事诉讼法的规定,公安机关对于已经超过追诉时效期限的案件:()
到2010年,我国城市节水的目标是南方沿海缺水城市达到()。
铁路工程招标中,下列属于标段划分原则的有()。
针对某种具体的物价与工资形势,由政府出面施加压力来扭转局势的收入政策是( )。
()是指以期限在一年以下的金融资产为交易标的物的短期金融市场。
对于大众来说,科学无处不在,它完全可以成为社会流行文化的一部分,享受科学文化知识就像看书、读报、听音乐、看电影一样。近日,由中国科协主办的“典赞·2016科普中国”活动揭晓了2016年度十大“科学”流言终结榜,同时揭晓的还有年度十大科学传播事件
下列不属于“三通”的是()。
某中学发现有学生课余用扑克玩带有赌博性质的游戏,因此规定学生不得带扑克进入学校,不过即使是硬币,也可以用作赌具,但禁止学生带硬币进入学校是不可思议的,因此,禁止学生带扑克进学校是荒谬的。以下哪项如果为真,最能削弱上述论证?
最新回复
(
0
)