首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
admin
2017-09-15
66
问题
设a
1
<a
2
<…<a
n
,且函数f(χ)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
f
(n)
(ξ).
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*] 构造辅助函数φ(χ)=f(χ)-k(χ-a
1
)(χ-a
2
)…(χ-a
n
),显然φ(χ)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ′(ξ
1
(1)
)=φ′(ξ
2
(1)
)=…=φ′(ξ
n
(1)
)=0,φ′(χ)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(χ)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
n-1
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
n
(χ)=f
(n)
(χ)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Vok4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]
设函数f(t)在[0,+∞]上连续,且满足方程试求f(t).
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设函数g(x)可微,h(x)=e1+g(x),h’(x)=1,g’(1)=2,则g(1)等于
设u=f(x,y,z),ψ(x2,ey,z)=0,y=sinx,其中f,ψ都具有一阶连续偏导数,且.
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:求du/dx.
随机试题
患者,女,51岁。主诉“阴道排液伴接触性出血1年”入院。患者近1年来无明显诱因出现阴道流血,鲜红色,伴白带增多呈米汤样,无异味,性生活后阴道流血增多,伴有血块。妇科检查:宫颈呈桶状,后唇见一约5cm×4cm×4cm大小的菜花状赘生物,质脆,触之易出血。
对行政管理中出现的失误,不仅要追究行政管理当事人责任,而且还要追究相关领导人责任的一种制度是【】
治疗脱肛穴位,其经别入于肛门,其经筋结于臀的穴位是
急性心包炎的心电图改变为
扩张型心肌病的临床表现哪一项错误
宏观经济管理所追求的经济总量平衡是一种()基本平衡。
写字楼物业投保的最大特点是()。
阅读下面一段说明文,完成下列5题。什么是星云?过去人们往往把天空中一切云雾状的天体都说成是星云。其实,离我们非常遥远的位于银河系以外的云雾状天体,并不是星云,而是与银河系类似的庞大的恒星系统。根据它们的外貌,人们有时也称其为河外星云,即银河系以外的星云。
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
Mybossorderedthatthelegaldocuments___tohimbeforelunch.
最新回复
(
0
)