设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.

admin2013-10-11  47

问题 设二阶常系数微分方程y’’+ay+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.

选项

答案由此方程的非齐次项含e2x及特解形式知,e2x是非齐次方程的特解,而由线性微分方程解的性质知(1+x)ex应是其对应的齐次方程的解, 故r=1为此方程的齐次方程的特征方程的二重根,故特征方程为r22r+1=0,由此得a=-2,β=1,故原方程为y’’-2y+y=ye2x,将e2x代入得y=1,故得原方程为y’’-2y+y=e2x,其通解为y=(C1+C2x)ex+e2x

解析
转载请注明原文地址:https://kaotiyun.com/show/YdF4777K
0

相关试题推荐
最新回复(0)