首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得 (1+ξ2)f’(ξ)arctanξ=一1.
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得 (1+ξ2)f’(ξ)arctanξ=一1.
admin
2017-07-26
56
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
e
f(x)
arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得
(1+ξ
2
)f’(ξ)arctanξ=一1.
选项
答案
令F(x)=e
f(x)
arctanx.由已知条件,F(1)=e
f(x)
arctan1=[*]e
f(x)
arctanxdx=1.由积分中值定理,存在点η∈[0,[*].于是,F(x)在[η,1]上连续,在(η,1)内可导,由洛尔定理,存在点ξ∈(η,1)[*](0,1),使得F’(ξ)=0,即(1+ξ
2
)f’(ξ)arctanξ=一1.
解析
所以,可作辅助函数F(x)=e
f(x)
arctanx,用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/YuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
设中与A等价的矩阵有()个.
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设f(x)在[0,1]上二阶可导,|f"(x)|≤1(x∈[0,1])f(0)=f(1).证明:对任意的x∈[0,1],有|f’(x)|≤.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
随机试题
女,58岁。近2年时有夜间阵发性呼吸困难,入院前一天出现气促,咯粉红色泡沫痰。体检:心率140次/分,心尖部可闻及舒张期隆隆样杂音。心电图示窦性心动过速,下列哪项治疗措施不宜使用()
当链传动中的链被拉长,且链轮中心距可调节时,就采用安装张紧轮,使链条拉紧。()
A.在4~5日拆线B.6~7日拆线C.7~9日拆线D.10~12日拆线E.14日拆线下腹部、会阴部
先用大量水洗,继用30%~50%乙醇擦洗,再用饱和硫酸钠液湿敷先用5%碳酸氢钠冲洗,继用清水冲洗,再用氧化镁甘油糊外涂
物流是物品从供应地向接受地的实体流动过程,它包括的活动有
涉税服务业务从服务的内容来分,包括()。
下列有关化学课程标准对教科书编写的建议,不正确的是()。
在下列模式中,能够给出数据库物理存储结构与物理存取方法的是
Beguninthelate1960sbyPentagonweaponsresearchersasasystemforeasingcommunicationbetweencomputersindisparateelec
Hewasgreatlyrelievedthatshedidnot_____________(像他担心的那样,向媒体泄漏那个秘密).
最新回复
(
0
)