首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X的概率密度为f(x)=Aex(B-x)(-∞<x<+∞),且E(X)=2D(x),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=的分布函数F(y).
已知随机变量X的概率密度为f(x)=Aex(B-x)(-∞<x<+∞),且E(X)=2D(x),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=的分布函数F(y).
admin
2016-10-20
38
问题
已知随机变量X的概率密度为f(x)=Ae
x(B-x)
(-∞<x<+∞),且E(X)=2D(x),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X
2
+e
X
);(Ⅲ)Y=
的分布函数F(y).
选项
答案
(Ⅰ)由[*]且E(X)=2D(X),得到E(X)=[*]=2D(X)=1,即B=2. 而[*] (Ⅱ)E(X
2
+e
X
)=E(X
2
)+E(e
X
).而 [*] (Ⅲ)由于[*] 显然,当y<0时,F(y)=0;当y≥0时, [*] 其中Ф(Y)为标准正态分布的分布函数.
解析
f(x)=
的概率密度函数.
转载请注明原文地址:https://kaotiyun.com/show/Z4T4777K
0
考研数学三
相关试题推荐
[*]
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
问a,b为何值时,下列函数在其定义域内的每点处连续:
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
随机试题
下列哪项不符合由促胃液素瘤引起的消化性溃疡
患者女,35岁,入院行腹腔镜胆囊切除术。术后护士的饮食指导正确的是
根据《物权法》,下列不得作为个人质押贷款质押物的是()。[2014年6月真题]
针对识别出的可能导致对被审计单位持续经营能力产生重大疑虑的事项或情况,假定治理层不参与管理被审计单位,下列各项中,注册会计师应当与治理层沟通的有()。
下列选项中不属于常见的运动损伤的是()
如图在透明塑料做成的长方体容器中灌进一些水,固定容器的一边将其倾倒,随着容器的倾斜度不同,水的各个表面的图形形状和大小也不同.试尽可能多地找出这些图形的形状和大小之间所存在的各种规律(不少于3种)。
根据2012年12月11日某时刻的数据,1美元可以兑换6.2329元人民币。若在此后某时刻,1美元可以兑换6.00元人民币。则()。
直接决定教育性质的是()
[A]Analyzingyourowntaste[B]Beingcautiouswhenexperimenting[C]Findingamodeltofollow[D]Gettingthefinallook
[A]Nutritionhighlights[B]Typesofberries[C]Bodybenefits[D]Shoppingandstoragetips[E]Fuelforthebrain[F]Evidenc
最新回复
(
0
)