首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2015-07-22
76
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故 AX=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所 以n-r
1
≤n一r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=O,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
, 则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足 方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解 [*](A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)-r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性 组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
| A
T
b)=r(A
T
A |A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z5U4777K
0
考研数学三
相关试题推荐
2021年10月8日,李克强总理主持召开国务院常务会议。针对今冬明春电力、煤炭供求压力依然较大的情况,会议强调,()是“六保”的重要内容,要发挥好煤电油气运保障机制作用,有效运用市场化手段和改革措施,保证电力和煤炭等供应。
据新华社2022年6月8日报道,人力资源和社会保障部、财政部近日印发通知,明确2022年“三支一扶”计划招募高校毕业生3.4万名。“三支一扶”是指()和帮扶乡村振兴。
“明者因时而变,知者随事而制。”中国经济已经进入新常态,不能用“旧常态”的思想继续引导新常态的实践和发展,也不能用“旧常态”的观念来判断、甚至制约新常态的改革发展与创新实践。更好引领新常态的根本之策是
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
求下列级数的和;
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
用比较审敛法判别下列级数的收敛性:
用比值审敛法判别下列级数的收敛性:
随机试题
薪酬对员工、企业及社会的功能。
化脓性关节炎早期诊断中,最有价值的方法是
下列关于K—B纸片扩散法操作的描述,错误的是
腹部泌尿系平片(KUB)影像细节显示指标为
消防安全组织人员基本分为()。
用人单位在满足一定条件下可以延长工作时间,但是每月不得超过()小时。
个体产生新奇独特的、有社会价值的产品能力或特性称之为______。
具有方向性的过电流保护的主要组成元件有()。
定时器的Interval属性的值是一个整数,它表示的是
Thegovernmentmustincreasethe______ofreformstoavoidfurtherbloodshed.
最新回复
(
0
)