首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2015-07-22
45
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故 AX=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所 以n-r
1
≤n一r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=O,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
, 则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足 方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解 [*](A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)-r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性 组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
| A
T
b)=r(A
T
A |A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z5U4777K
0
考研数学三
相关试题推荐
据新华社2022年6月8日报道,人力资源和社会保障部、财政部近日印发通知,明确2022年“三支一扶”计划招募高校毕业生3.4万名。“三支一扶”是指()和帮扶乡村振兴。
据新华社2021年3月31日报道,“十四五”规划和2035年远景目标纲要提出。发展壮大城市群和都市圈,分类引导大中小城市发展方向和建设重点,形成()的城镇化空间格局。
2020年8月15日,“绿水青山就是金山银山”理念提出15周年理论研讨会在浙江安吉县召开,与会专家学者和有关负责人就“两山”理念的实践成果、时代意义等进行研讨,并对进一步实践提出建议。与会专家认为,浙江15年的实践证明,“绿水青山就是金山银山”理念符合客观
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
资本主义生产的直接目的和决定性动机,就是无休止地采取各种方法获取尽可能多的剩余价值。剩余价值的实质是
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
判别级数的敛散性.
随机试题
试述二尖瓣狭窄可能出现的体征。
关于子宫内膜癌的描述,错误的是
营养不良患儿皮下脂肪最后消失的部位是
关于淀粉酶的叙述,错误的是
某猪场的一批5月龄育肥猪,体温和食欲正常,但生长缓慢,个体大小不一;经常出现咳嗽、气喘等症状。剖检见肺部尖叶、心叶、膈叶前缘呈双侧对称性肉变,其他器官未见异常该病最可能的病原是()。
闭合性气胸,肺萎缩在百分之多少以下可不需治疗()
关于基层群众性自治组织与基层政权的关系的表述,下列选项不正确的是:
A、I1<I2<I3B、I1<I3<I2C、I3<I2<I1D、I3<I1<I2B由图1-1知,在积分区域D内,有,于是有ln(x+y)<sin(x+y)<x+y,即[ln(x+y)]3<[sin(x+y)]3<(x+y)3,故I1<I3<I2
数据表如下:图书(图书编号C(6),书名C(16),作者C(6),出版单位C(20),单价N(6,2))读者(借书证号C(4),单位C(8),姓名C(6),性别C(2),职称C(6),地址C(20))借阅(借书证号C(4),图书编号C(6),借书日期
IfeltsoembarrassedthatIcouldn’tdoanythingbut________therewhenIfirstmetmypresentwife.
最新回复
(
0
)