首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上二阶可导,f(0)=0,f〞(x)<0,当0<a<x<b时,有( )
设f(x)在[0,+∞)上二阶可导,f(0)=0,f〞(x)<0,当0<a<x<b时,有( )
admin
2022-05-20
52
问题
设f(x)在[0,+∞)上二阶可导,f(0)=0,f〞(x)<0,当0<a<x<b时,有( )
选项
A、af(x)>xf(a)
B、bf(x)>xf(b)
C、xf(x)>bf(b)
D、xf(x)>af(a)
答案
B
解析
令F(x)=f(x)/x(x>0),则
F’(x)=[xf’(x)-f(x)]/x
2
={xf’(x)-[f(x)-f(0)]}/x
2
=[xf’(x)-xf’(ξ)]/x
2
=[f’(x)-f’(ξ)]/x,
其中0<ξ<x<b.
由f"(x)<0,知f’(x)单调减少,故F’(x)<0,从而F(x)单调减少,于是有f(x)/x>f(b)/b,即bf(x)>xf(b),故B正确.
转载请注明原文地址:https://kaotiyun.com/show/ZFR4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x24x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+6y32,求:(I)参数a,b的值;(Ⅱ)正交变换矩阵Q。
A、 B、 C、 D、 C
计算二重积分其中D是由x2+y2=1的上半圆与x2+y2=2y的下半圆围成的区域.
设平面区域D={(x,y)|x2+y2≤1,x+y≥0)求二重积分.
设总体X服从(0,θ](θ>0)上的均匀分布,x1,x2,…,xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设随机变量X与Y独立,均服从[0,3]上的均匀分布,则P{1<max{X,Y)≤2}=()
设二次型f(x1,x2,x3)=(x1—x2)2+(x1—x3)2+(x3—x2)2.求正交变换Ǫ,使二次型f化为标准形.
设x=rcosθ,y=rsinθ,则极坐标系(r,θ)中的累次积分可化为直角坐标系(x,y)中的累次积分().
设f(x)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-f’(ξ)+1=0.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f”(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且φ(x)dx=1.证明:f(x)φ(x)dx≥f[xφ(x)dx].
随机试题
从100人中调查对A、B两种2008年北京奥运会吉祥物的设计方案的意见,结果选A方案的人数是全体接受调查人数的3/5;选B方案的比选A方案的多6人,对两个方案都不喜欢的人数比对两个方案都喜欢的人数的1/3多2人,则两个方案都不喜欢的人数是()。
下列病变中,斜位吞钡检查,不形成食管压迹的是
A.多饮、多食、多尿、消瘦B.乏力、纳差、血压低、皮肤色素黑C.蛋白尿、水肿、高脂、低蛋白血症D.怕热多汗、疲乏无力、急躁易怒E.蛋白尿、血尿、高血压
知图5-9所示等直杆的轴力图(图中集中荷载单位为kN,分布荷载单位为kN/m),则该杆相应的荷载为()。
隐框玻璃幕墙玻璃板块制作前对基材进行的清洁工作,符合“两次擦”工艺要求的是()。
会计核算上,企业将融资租入的设备计入固定资产,体现了()原则。
观察法是学校教育中常用的研究方法。以观察者是否参与被观察对象的活动为标准,可以将观察法分为()。
要搞好接待工作,沟通好党群、政群的关系,信访接待人员一定要()。
中央电视台举办的“年度感动中国十大人物评选活动”的颁奖辞中有这样一句话:“这个风一样的年轻人,他不断超越,永不言败,代表着一个正在加速的民族。他身披国旗,一跃站在世界面前。”这段文字中“风一样的年轻人”是一个极致的比喻,它主要用于说明()。
司法工作人员帮助在押犯脱逃的,一律成立私放在押人员罪,请对这一说法进行辨析。
最新回复
(
0
)