首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
admin
2018-01-30
131
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0。又因为 0=∫
0
π
cosxdx=∫
0
π
cosxdF(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx =∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0。 由以上证得,存在满足0<ξ<π的ξ,使得 F(0)=F(ξ)=F(π)=0, 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得 F
’
(ξ
1
)=F
’
(ξ
2
)=0,且f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZUk4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
设f(x)在[0,1]上连续,取正值且单调减少,证明
确定下列函数定义域:
讨论下列函数在x=0处的导数,并作几何解释.(1)f(x)=|sinx|;(2)f(x)=x1/3;(3)f(x)=x2/3.
求极限
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
Idon’tknowwhyhe________inthemiddleofasentence.
下列情况下,能使组织液生成减少的是
A.省(自治区)级卫生行政部门B.省(自治区)级以上卫生行政部门C.县(区)级卫生行政部门D.县(区)级以上卫生行政部门E.县(区)级以上地方卫生行政部门医疗卫生机构承担职业病诊断,应当向有关行政部门申请。有权依法予以批准的卫生行政部门是
半夏和天南星都忌用的病症是
要约不得撤销的情形包括( )。
战略管理的过程包括()。
进行存储解决方案选择时,以下说法错误的是(13)。
A、兔子缺乏耐心B、池塘里根本没鱼C、兔子掉到池塘里了D、兔子钓鱼方法不当D
Itison(each)individualeffort(which)thesafetyandhappinessof(thewhole)(depend).
Itishightimewe______(start)topayattentiontosuchmistakes.
最新回复
(
0
)