首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0一δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
判断下列结论是否正确?为什么? (Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0); (Ⅱ)若x∈(x0一δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
admin
2017-10-23
47
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(x),g(x)均在x
0
处可导,且f(x
0
)=g(x
0
),则f’(x
0
)=g’(x
0
);
(Ⅱ)若x∈(x
0
一δ,x
0
+δ),x≠x
0
时f(x)=g(x),则f(x)与g(x)在x=x
0
处有相同的可导性;
(Ⅲ)若存在x
0
的一个邻域(x
0
—δ,x
0
+δ),使得x∈(x
0
一δ,x
0
+δ)时f(x)=g(x),则f(x)与g(x)在x
0
处有相同的可导性.若可导,则f’(x
0
)=g’(x
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(x
0
)=g(x
0
)不能保证f’(x
0
)=g’(x
0
).正如曲线y=f(x)与y=g(x)可在某处相交但并不相切. (Ⅱ)不正确.例如f(x)=x
2
,g(x)=[*]显然,当x≠0时f(x)=g(x),但f(x)在点x=0处可导,因为g(x)在点x=0不连续,从而g(x)在点x=0处不可导. (Ⅲ)正确.由假设可得当x∈(x
0
—δ,x
0
+δ)时 [*] 因此,当x→x
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZsX4777K
0
考研数学三
相关试题推荐
改变积分次序.
求微分方程的通解.
求微分方程y2dx+(2xy+y2)dy=0的通解.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
计算定积分
变换下列二次积分的积分次序:∫01f(x,y)dx;
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有=________.
求极限
随机试题
能够提高就业水平的宏观政策包括()。
润滑油用于机械设备上所起的主要作用有()种。
(2012年第177题)急性化脓性阑尾炎,行麦氏切口阑尾切除术。下列描述正确的有
显像剂被脏器或组织摄取的机制与显像方法的关系,99mTc-DTPA肾动态显像属于
对求医行为的理解正确的是()。
“民以食为天,食以安为先”,食品安全与身体健康密切相关。下列做法中不会危害人体健康的是()。
进一步深化文化体制改革,坚持放在首位的是()
TheglobalmarketintheseservicesislikelytotouchUS$640billion,afigurecomparablewiththesizeoftheITindustry.
AccompanyingIndia’sindustrialtransformationhasbeenanotherrevolutionofprofoundsignificance.Aproperty-owningmiddlecl
Whowantstopayfor"D"-qualityplumbing(管道)?Flytheskieswitha"D"-ratedpilot?Settle【C1】_____a"D"restaurant?Ex
最新回复
(
0
)