首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
admin
2016-05-03
44
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设
则φ(x)在区间(一∞,+∞)上 ( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
(x)=(x一a)f(x)一I f(t)dt
=(x—a)f(x)一(x一a)f(ξ)
=(x一a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有
(x)>0.因此当x≠a时,φ’(x)>0.故可知在区间(一∞,a)与(a,+∞)上φ(x)均严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x∈(a,+∞),则
φ(x
2
)一φ(a)=
一f(a)=f(ξ
2
)一f(a)>0,
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(a)一φ(x
1
)=f(a)一f(ξ
2
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/a1T4777K
0
考研数学三
相关试题推荐
经济文化相对落后的国家建设社会主义之所以是长期的和艰巨的,是因为()。
2020年这场新冠肺炎疫情,是新中国成立以来发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件。中国人民在抗击疫情中展现的非凡精神,成为打赢疫情防控的人民战争、总体战、阻击战的力量之本、信心之源。这说明了()。
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
存大革命失败、白色恐怖极其严重的条件下,中国革命之所以能够得到坚持和发展,跟本的原因就在于()。
俗话说“人闲百病生”。医学研究证明,适度的紧张有益于健康激素的分泌,这种激素能增强身体的免疫力,抵御外界的不良刺激和疾病的侵袭。这说明()。
习近平指出:“新冠肺炎疫情不可避免会对经济社会造成较大冲击。越是在这个时候,越要用全面、辩证、长远的眼光看待我国发展,越要增强信心、坚定信心。综合起来看,我国经济长期向好的基本面没有改变,疫情的冲击是短期的、总体上是可控的。只要我们变压力为动力、善于化危为
在突如其来的新冠肺炎疫情面前,人们没有退缩避让,而是团结起来、行动起来。有人来不及道别,留给孩子一个背影;有人没时间寒暄,留给亲人一封家书;有人顾不得疲惫,收拾包裹奔赴一线……无论在哪个工作岗位、无论何种职业身份,无数人舍小家为大家、舍小我顾大局。一切为了
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
随机试题
直觉思维最常用的形式是()
以下有关ERP软件的说法中错误的是()
具有强心作用的化合物是
除下列哪一项外,均为五脏具有的共同特点
会员未在期货交易所规定的时间内追加保证金或者自行平仓的,期货交易所应当将该会员的合约强行平仓,强行平仓的有关费用和发生的损失由()承担。
根据《合同法》的规定,下列情形中,买受人应承担标的物损毁、灭失风险的有()。(2013年)
孙犁属于哪一个文学流派?()
根据《婚姻法》及相关司法解释的有关规定,下列表述正确的是()。
在考生文件夹下,存在一个数据库文件“sampl.accdb”。试按以下操作要求,完成表的建立和修改:将“tEmployee”表中的“职称”字段的“默认值”属性设置为“副教授”。
Thetimetheone-daycoursebeganwas______.ThereasonshestayedinWesthamptonon10thwerethefollowingexcept______.
最新回复
(
0
)