首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
admin
2016-05-03
75
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设
则φ(x)在区间(一∞,+∞)上 ( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
(x)=(x一a)f(x)一I f(t)dt
=(x—a)f(x)一(x一a)f(ξ)
=(x一a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有
(x)>0.因此当x≠a时,φ’(x)>0.故可知在区间(一∞,a)与(a,+∞)上φ(x)均严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x∈(a,+∞),则
φ(x
2
)一φ(a)=
一f(a)=f(ξ
2
)一f(a)>0,
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(a)一φ(x
1
)=f(a)一f(ξ
2
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/a1T4777K
0
考研数学三
相关试题推荐
疫情突如其来,很多线上销售平台订单剧增、人手紧缺;与此同时,一些线下商户暂时歇业、员工“闲置”,企业人力成本增加。为此,某生鲜电商与餐饮、酒店、影院等行业的数十家企业进行合作,通过借调员工缓解用工压力。这种企业之间以借用或外派的方式实现劳动力调剂的“共享用
适应新时代党和国家发展新要求,党的十九届二中全会把“中国共产党领导是中国特色社会主义最本质的特征”写入宪法,是为了()。
法律权利是各种权利中十分重要的权利,具有的特征有()。
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
利用定积分的几何意义求出下列积分:
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
证明:函数f(x)=1/xsin1/x在区间(0,1]内无界,但当x→0+时这个函数不是无穷大.
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
A.主动脉口B.肺动脉口C.冠状窦口D.右肺静脉口E.上腔静脉口心脏静脉回流的入口是
7粉末静电喷涂的特点是什么?
()是衡量一个国家经济实力与购买力的重要指标。
辅助数据文件的后缀是()
梁启超,字卓如,号________,别署________。
宫外孕保守治疗中,用化学药物治疗的先决条件为
背景某房地产开发公司甲在某市老城区参与旧城改造建设,投资3亿元,修建1个四星级酒店,2座高档写字楼,6栋宿舍楼,建筑周期为20个月,该项目进行了公开招标,某建筑工程总公司乙中标,甲与乙签订工程总承包合同,双方约定:必须保证工程质量优良,保证工期,乙可以将
童年期的主要活动是()。
当IP包头中TTL值减为0时,路由器发出的ICMP报文类型为()。
以下属于SQL数据查询命令的是( )。
最新回复
(
0
)