首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
admin
2016-05-03
85
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设
则φ(x)在区间(一∞,+∞)上 ( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
(x)=(x一a)f(x)一I f(t)dt
=(x—a)f(x)一(x一a)f(ξ)
=(x一a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有
(x)>0.因此当x≠a时,φ’(x)>0.故可知在区间(一∞,a)与(a,+∞)上φ(x)均严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x∈(a,+∞),则
φ(x
2
)一φ(a)=
一f(a)=f(ξ
2
)一f(a)>0,
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(a)一φ(x
1
)=f(a)一f(ξ
2
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/a1T4777K
0
考研数学三
相关试题推荐
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
经济文化相对落后的国家建设社会主义之所以是长期的和艰巨的,是因为()。
与辛亥革命相比,五四运动的特点在于()。
适应新时代党和国家发展新要求,党的十九届二中全会把“中国共产党领导是中国特色社会主义最本质的特征”写入宪法,是为了()。
在社会主义市场经济条件下,市场主体必须通过向社会和他人提供一定数量和质量的产品,建立满足社会和他人需求的良好信誉,即通过为社会和他人服务并为其所接受以实现自己的利益。这说明()。
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
判断下列级数的绝对收敛性和条件收敛性
若幂级数在x=-1处收敛,则此级数在x=2处().
随机试题
牙体修复是一项生物性治疗技术,备洞时,洞侧壁的釉质壁必须与釉柱方向
A.隐性感染B.急性(病原消灭型)感染C.慢性感染D.潜伏感染E.慢发病毒感染乙型肝炎病毒常发生
城市生态系统的高“质量”性的涵义是指()。
建筑安装工程费用由()构成。
影响期货市场价格的其他因素包括()。
可转换证券的内在价值,是指将可转换证券转股前的利息收入和转股时的转换价值按适当的必要收益率折算的现值。()
个人汽车贷款中,如果借款人无法按照计划偿还贷款,可以申请展期,借款人须在贷款全部到期前()天做出展期申请。
下列依次填入横线处的词语,恰当的一组是()。我几乎说不出秋比冬为什么更好,也许因为那枝头的几片黄叶,或是那篱畔的几朵残花,在那些上边,是比较冬天更显示了生命,不然,是在那些上面,更使我忆起了生命吧,一只黄叶,一片残英,那在联系着过去与将来吧
在局域网中,若采用10BASE-T标准,其中数字10表示的含义是
•YouwillhearpartofabusinessnegotiationbetweenMr.MitchellandMadamLi.•Foreachquestion23—30,markoneletterA,B
最新回复
(
0
)