首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
admin
2016-05-03
70
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设
则φ(x)在区间(一∞,+∞)上 ( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
(x)=(x一a)f(x)一I f(t)dt
=(x—a)f(x)一(x一a)f(ξ)
=(x一a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有
(x)>0.因此当x≠a时,φ’(x)>0.故可知在区间(一∞,a)与(a,+∞)上φ(x)均严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x∈(a,+∞),则
φ(x
2
)一φ(a)=
一f(a)=f(ξ
2
)一f(a)>0,
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(a)一φ(x
1
)=f(a)一f(ξ
2
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/a1T4777K
0
考研数学三
相关试题推荐
中国政府始终本着公开、透明、负责任态度,及时向世界卫生组织以及有关国家和地区通报疫情信息,第一时间发布病毒基因序列等信息,毫无保留同世卫组织和国际社会分享防控、治疗经验,积极开展抗疫国际合作,携手应对共同威胁和挑战,坚决维护中国人民生命安全和身体健康,坚决
这次疫情,对产业发展既是挑战也是机遇,一些传统行业受冲击较大,而智能制造、无人配送、在线消费、医疗健康等新兴产业展现出强大成长潜力,网络购物、生鲜电商、在线教育、远程问诊、远程办公等新兴服务业态快速扩张,一些技术含量高的产品产量也逆势增长。这里当然有需求拉
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
随机试题
评估人员通过量化各种政策或行政方案的总成本和总效果来对它们进行对比从而提出建议的评估方法是【】
下列哪种疾病与输血无关?
A.牛肉膏蛋白胨B.煌绿、胆盐、硫代硫酸钠、枸橼酸盐C.乳糖D.胆盐E.中性红SS琼脂培养基是选择性很强的培养基,成分较多,其抑制剂为
下列项目中,能同时影响资产和负债发生变化的是()。
下列关于客户理财需要和目标分析的说法中,正确的是()。
()是发达国家企业实现技术国际化的最常用办法。
里坊制源于出现在秦朝的闾里制,并且继承了它的管理办法。()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值”。这句话的含义是
当各项目小组成员对职能经理和项目经理双重负责的时候,项目团队建设经常会显得比较复杂。对这种双重负责关系的有效管理通常是(45)的职责。
TheCarnegieFoundationreportsaysthatmanycollegeshavetriedtobe"allthingstoallpeople".Indoingso,theyhaveincre
最新回复
(
0
)