首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<f<b).证明:存在ξ∈(a,b),使得f"(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<f<b).证明:存在ξ∈(a,b),使得f"(ξ)=0.
admin
2016-09-30
39
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(x)交于点C(c,f(c))(其中a<f<b).证明:存在ξ∈(a,b),使得f"(ξ)=0.
选项
答案
由微分中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 [*] 因为点A,B,C共线,所以f’(ξ
1
)=f’(ξ
2
), 又因为f(x)二阶可导,所以再由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/aAT4777K
0
考研数学三
相关试题推荐
[*]
设P(A)=0或1,证明A与其他任何事件B相互独立.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设P(x1,y1)是椭圆外的一点,若Q(x2,y2)是椭圆上离P最近的一点,证明PQ是椭圆的法线.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
求方程karctanx-x=0不同实根的个数,其中k为参数.
φ(x)=∫sinxcos2xln(1+t2)dt,求φ’(x).
随机试题
海关
动脉血二氧化碳分压(PaCO2)超过5.9~6.6Pa而通气良好,提示严重()
患急性胰腺炎时.尿淀粉酶与血清淀粉酶增高的关系为
男性,72岁。哮喘史40年,近5年来发生双下肢水肿,近1周哮喘加重,白天发作每周>2次,每天夜间均有发作,活动受限,没有急性加重症状。该患者哮喘控制水平按2006年GINA指南属于的级别是
区别癌与肉瘤的主要依据是
下列关于公共秩序保留与“直接适用的法”的说法,正确的有:()
在市场经济条件下,金融机构必须以其()来承担全部的风险和亏损。
2010年1一3月,我国鲜苹果出口总量为31.2万吨,与上年同期相比下降11%;总出口额为2.1亿美元,增加4%;平均单价为679美元/吨,上升17%。2010年1—3月,我国鲜苹果对俄罗斯的出口量为5.71万吨,同比减少13%,出口额为3693
鞭炮生命中最光辉的一页就是那惊天一吼了,一经点燃,前面的响了,后面的自然跟进,____________,世俗地灿烂着。填入画横线部分最恰当的一项是:
ForeignfinancierscomplainingaboutthelegalwarstheywilllaunchtorecoverbaddebtsinRussiararelymeanmuch.Theexpens
最新回复
(
0
)